Gas-Fired Pool & Spa Heater

Atmospheric Models 206A, 266A, 336A & 406A

Lo NOx Models 207A, 267A, 337A & 407A

WARNING: If these instructions are not followed exactly, a fire or explosion may result causing property damage, personal injury or death.

Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.

WHAT TO DO IF YOU SMELL GAS:
• Do not try to light any appliance.
• Do not touch any electrical switch; do not use any phone in your building.
• Immediately call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.
• If you cannot reach your gas supplier, call the fire department.

Installation and service must be performed by a qualified installer, service agency or the gas supplier.

This manual should be maintained in legible condition and kept adjacent to the heater or in a safe place for future reference.
For your health and the protection of your pool equipment, it is essential that your water be chemically balanced. The following levels must be used as a guide for balanced water.

<table>
<thead>
<tr>
<th>Recommended Level(s)</th>
<th>Fiberglass Pools</th>
<th>Fiberglass Spas</th>
<th>Other Pool & Spa Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Temp. (Deg. F)</td>
<td>68 to 88</td>
<td>89 to 104</td>
<td>68 to 104</td>
</tr>
<tr>
<td>pH</td>
<td>7.3 to 7.4</td>
<td>7.3 to 7.4</td>
<td>7.6 to 7.8</td>
</tr>
<tr>
<td>Total Alkalinity (PPM)</td>
<td>120 to 150</td>
<td>120 to 150</td>
<td>80 to 120</td>
</tr>
<tr>
<td>Calcium Hardness (PPM)</td>
<td>200 to 300</td>
<td>150 to 200</td>
<td>200 to 400</td>
</tr>
<tr>
<td>Salt (PPM)</td>
<td>4500 MAXIMUM</td>
<td>4500 MAXIMUM</td>
<td>4500 MAXIMUM</td>
</tr>
<tr>
<td>Free Chlorine (PPM)*</td>
<td>2 to 3</td>
<td>2 to 3</td>
<td>2 to 3</td>
</tr>
<tr>
<td>Total Dissolved Solids (PPM)</td>
<td>3000 MAXIMUM**</td>
<td>3000 MAXIMUM**</td>
<td>3000 MAXIMUM**</td>
</tr>
</tbody>
</table>

* Free Chlorine MUST NOT EXCEED 5 PPM!

** In salt water chlorinated pools, the total TDS can be as high as 6000 ppm.

- Occasional chemical shock dosing of the pool or spa water should not damage the heater providing the water is balanced.
- Automatic chemical dosing devices and salt chlorinators are usually more efficient in heated water, unless controlled, they can lead to excessive chlorine level which can damage your heater, and which is not covered under warranty. A check valve should be installed between the heater outlet and a chlorinator or other chemical dosing device.
- Further advice should be obtained from your pool or spa builder, accredited pool shop, or chemical supplier for the correct levels for your water.

Rev. 27 reflects the following:
Changes to: Specifications and Dimensions on pages 16-17, Maximum Equivalent Pipe Length table on page 20, Illustrated Parts List on pages 48-55.
Additions: None
Deletions: None
PART ONE
OWNER'S OPERATING INSTRUCTIONS

SECTION 1
START-UP PROCEDURES
4 Before Start-Up
5 Lighting Instructions & Shut-Off Procedures - Manually Lighted Pilots MV
6 Operating Instruction & Shut-Off Procedures - Automatically Lighted Pilots IID

SECTION 2
CAUTION

SECTION 3
MAINTENANCE & CARE PROCEDURES
8 Pool & Spa Water Chemistry
9 Cold Weather Operation
9 Winterizing the Pool & Spa Heater

PART TWO
INSTALLATION & SERVICE INSTRUCTIONS
10 RECEIVING EQUIPMENT
11 GENERAL SPECIFICATIONS
11 INSTALLATION INSTRUCTIONS

11 Code Requirements
12 Clearances
12 Outdoor Heater Installation
14 Florida and Texas Building Codes
15 Indoor Heater Installation
15 Outdoor Stack/Indoor Stack
16 Atmospheric Specifications and Dimensions
17 Lo NOx Specifications and Dimensions
18 Combustion and Ventilation Air
18 Vent Piping
19 Gas Supply Connections
20 Gas Pressure Regulator
20 Gas Pressure Adjustment Locations
20 Pipe Sizing For Gas Connections
21 Flow Rates
21 Heat Exchanger Pressure Drop Tables
22 Polymer Headers
22 Cast Iron Headers
22 Unitherm Governor Operation
23 Internal Automatic Bypass Valve
23 External Auxiliary Bypass Valve
23 Auxiliary Bypass Valve Adjustment
23 Pressure Relief Valve Installation
24 Plumbing—Water Connections
25 Heat Exchanger Reversal Procedure
26 Electrical Wiring
26 Millivolt Models
26 Advanced Flame Technology (AFT) Models
27 Transformer Wiring
28 Wiring Diagram - Millivolt (Mechanical Therm.)
29 Wiring Diagram - AFT Models, Atmospheric
30 Wiring Diagram - AFT Models, Lo NOx

SECTION 4
SERVICING INSTRUCTIONS
31 General Location of Controls
32 Control Panel Removal
32 Control Adjustments - AFT Models
32 Control Adjustments - Millivolt Models
33 Thermostat Operation - AFT Board
35 Status and Diagnostics
36 Remote Control Installation and Operation
36 Remote Operation
36 Activating the Remote
37 Remote Control Wiring
37 2-Wire Remote Control
37 3-Wire Remote Control
38 Time Clock / Fireman's Switch
38 Water Pressure Switch
38 Flame Roll-Out Safety Switch
38 High Limits
39 Pilot Safety
39 Burner Tray Removal (ATM)
39 Gas Valve Removal (ATM)
39 Main Burner and Orifice Removal (ATM)
39 Pilot Removal and Cleaning
40 Heat Exchanger Removal
40 Tube Cleaning Procedure
40 Desooting Procedure
40 Combustion Chamber Removal
40 Immersion Well Replacement
41 Unitherm Governor (U.G.) Replacement
41 Lo NOx Pool Heaters
41 Operation
41 Start-Up Procedures
41 Visual Inspection
41 Electrical
41 Flame Roll-Out Safety Switch
42 Burner Tray Removal
42 Gas Valve Removal
42 Main Burner and Orifice Removal
42 Pilot Removal
42 Combustion Blower Removal

SECTION 5
TROUBLESHOOTING
43 Mechanical
44 Electrical - Standing Pilot Millivolt
45 Electrical - Electronic Ignition (IID)
46 Control Logic - Flow Chart

SECTION 6
REPLACEMENT PARTS
48 Illustrated Parts List
51 Part Numbers
SECTION 1 - START-UP PROCEDURES

Your pool/spa heater has been designed for years of safe and reliable pool/spa water heating. It is available with millivolt or electronic ignition. ASME-certified units, typically used in commercial applications, are also available. This manual provides installation, operation, maintenance, and service information for these heaters.

If your heater has been installed correctly, operating the heater is an easy task. The upper front panel of the heater contains the control center that allows you to turn the heater On or Off and adjust the temperature settings for the pool or spa. The temperature range is factory set from 65°F (18°C) to 104°F (40°C). See figure above for location of toggle switch to turn the heater On and Off. Section 4 of this manual contains more details about the use of the controls in the Control Adjustments subsection (page 32).

BEFORE START-UP

BURNERS

Clean main burners, combustion fan (if equipped) and air louvers of dust, lint and debris. Keep heater area clear and free from combustibles, flammable liquids and chemicals. Do not obstruct the flow of combustion and ventilation air.

WATER

Water must be flowing through the heater during operation. Ensure that the system is filled with water and that the pump is operating.
CAUTION: Propane gas is heavier than air and will settle on the ground. Since propane can accumulate in confined areas, extra care should be exercised when lighting propane heaters.

LIGHTING INSTRUCTIONS AND SHUT-OFF PROCEDURES

MILLIVOLT SYSTEM

(Manually Lit Pilot)

A. This appliance has a pilot that must be lit by hand. When lighting the pilot, follow these instructions exactly.

B. BEFORE LIGHTING, smell all around the appliance area for gas. Be sure to smell near the floor because some gas is heavier than air and will settle on the floor.

WHAT TO DO IF YOU SMELL GAS:
Do not try to light any appliance.
Do not touch any electric switch; do not use any phone in your building.
Immediately call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.

LIGHTING INSTRUCTIONS

1. **STOP!** Read the safety information above.
2. Set the thermostat on the lowest setting.
3. Turn On/Off switch to the "Off" position.
4. Remove heater door panel.
5. Push in gas control knob slightly and turn clockwise to "Off".

NOTE: Knob cannot be turned from "Pilot" to Off unless knob is pushed in slightly. Do not force.

6. Wait 5 minutes to clear out any gas. If you then smell gas, **STOP!** Follow "B" in the safety information above. If you don't smell gas, go to the next step.
7. Locate pilot mounted on the right side panel of the burner tray.

8. Turn gas control knob counter-clockwise to "Pilot".
9. Place flame to end of pilot tube. Push in control knob all the way and hold to light pilot. Continue to hold control knob in for about one minute after the pilot is lighted, release knob and it will pop back up. Pilot should remain lighted. If it goes out, repeat steps 5 through 9. If knob does not pop up when released, stop and immediately call your service technician or gas supplier.
10. Stand to the side of the heater and turn the gas control knob counter-clockwise to "On".
11. Replace heater door panel.
12. Turn On/Off switch to the "On" position.
13. Set thermostat to the desired setting.

SHUT-OFF PROCEDURE

1. Set the thermostat to the lowest setting.
2. Turn On/Off switch to the "Off" position.
3. Remove heater door panel.
4. Push the gas control knob slightly and turn clockwise to "Off". Do not force.
5. Replace heater door panel.
CAUTION: Propane gas is heavier than air and will settle on the ground. Since propane can accumulate in confined areas, extra care should be exercised when lighting propane heaters.

OPERATING INSTRUCTIONS AND SHUT-OFF PROCEDURES

ELECTRONIC IGNITION SYSTEM
(AUTOMATICALLY LIGHTED PILOT)

A. This appliance is equipped with an ignition device which automatically lights the pilot. Do not try to light the pilot by hand.

B. BEFORE OPERATING, smell all around the appliance area for gas. Be sure to smell near the floor because some gas is heavier than air and will settle on the floor.

WHAT TO DO IF YOU SMELL GAS:
* Do not try to light any appliance.
* Do not touch any electric switch; do not use any phone in your building.
* Immediately call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.

C. Use only your hand to push in or turn the gas control knob. Never use tools. If the knob will not push in or turn by hand, do not try to repair it. Call a qualified service technician. Force or attempted repair may result in a fire or explosion.

D. Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control which has been under water.

1. STOP! Read the safety information above.
2. Set the thermostat to the lowest setting.
3. Turn off all electrical power to the appliance.
4. This appliance is equipped with an ignition device which automatically lights the pilot. Do not try to light the pilot by hand.
5. Remove heater door panel.
6. For Honeywell valve: Turn gas control knob clockwise to "Off".
 For Robertshaw valve: Models 266-406: Turn gas control knob clockwise to "Off". Model 206: Push in and move gas control lever counter-clockwise to "Off" position.
7. Wait 5 minutes to clear out any gas. If you then smell gas, STOP! Follow "B" in the safety information above. If you don't smell gas, go to the next step.
8. Turn gas control knob counter-clockwise to "On". (Honeywell VR 8300 and Robertshaw 7000)
9. Replace heater door panel.
10. Turn on all electrical power to the appliance.
11. Set thermostat to desired setting.
12. If the appliance will not operate, follow the instructions "To Turn Off Gas To Appliance" and call your service technician or gas supplier.

SHUT-OFF PROCEDURES

1. Set the thermostat at the lowest setting.
2. Turn off all the electrical power to the appliance if service is to be performed.
3. Remove heater door panel.
4. For Honeywell VR 8300 and Robertshaw 7000 gas valve.
 Turn gas control knob clockwise to "Off". Make sure knob rest against stop.
 For Robertshaw 7200 gas valve.
 Push in and move gas control lever counter-clockwise to "Off" position.
5. Replace heater door panel.
AFTER START-UP

Feel the inlet and outlet pipes. Outlet pipe should be only slightly warmer than the inlet. It should not be hot.

WARNING: *Should overheating occur or the gas supply fail to shut off, turn off the manual gas control to the heater.*

VISUAL INSPECTION - ATMOSPHERIC HEATERS

With the heater on, remove the door and make a visual check of the pilot and burner. The flame should be blue with a well-defined pattern.

![Flame Diagram](image)

MAIN BURNER FLAME

MILLIVOLT PILOT BURNER FLAME

A yellow or "floating" flame indicates restricted air openings or incorrect orifice size. Should this occur, shut the heater off and contact your installer or gas supplier.

WATER PRESSURE SWITCH

A water pressure switch is provided in the heater to shut off the burners in the event that water supply is interrupted. It is very important to verify that the switch electrically opens and shuts off the gas valve when water flow to the heater is interrupted. Otherwise, rapid and severe damage will likely occur to the heater. (The water pressure switch should be checked and adjusted for proper operation by a qualified service person at the time of installation and periodically checked thereafter. Refer to Pressure Switch Adjustment on pg. 38 of this manual).

WARNING: *Operation of the heater without water circulation will cause rapid and severe damage to the heater, and will void the warranty.*

SECTION 2 - CAUTION

Elevated water temperature can be hazardous. The U.S. Consumer Product Safety Commission has these guidelines:

1. Spa water temperatures should never exceed 104°F (40°C). A temperature of 100°F (38°C) is considered safe for a healthy adult. Special caution is suggested for young children.

2. Drinking of alcoholic beverages before or during spa or hot tub use can cause drowsiness which could lead to unconsciousness and subsequently result in drowning.

3. *Pregnant Women Beware!* Soaking in water over 102°F (39°C) can cause fetal damage during the first three months of pregnancy resulting in the birth of a brain-damaged or deformed child. Pregnant women should stick to the 100°F (38°C) maximum rule.

4. Before entering the spa or hot tub, users should check the water temperature with an accurate thermometer; spa or hot tub thermostats may err in regulating water temperatures by as much as 4°F (2.2°C).

5. Persons with a medical history of heart disease, circulatory problems, diabetes, or blood pressure problems should obtain a physician’s advice before using pools or hot tubs.

6. Persons taking medications which induce drowsiness, such as tranquilizers, antihistamines, or anticoagulants, should not use spas or hot tubs.
SECTION 3 - MAINTENANCE AND CARE PROCEDURES

WARNING: Check the heater for possible rodent nests after long periods of non-use.

To be followed one month after start-up and then semi-annually.

1. Inspect top of heater and drafthood for soot, a sticky black substance around finned tubes and "V" baffles, and open flue gas passageways. Any visible soot should be cleaned for proper operation.

2. Clean main burners and pilot burner of dust and lint.

3. Inspect and operate all controls, gas valve and pressure relief valve (if equipped).

4. Make visual check of the burner and pilot flames. Flame pattern on the main burner and pilot is illustrated on page 7. Yellow flame means restriction of the air openings. Lifting or blowing flame indicates high gas pressure. Low flame means low gas pressure. Should the latter occur, shut the heater off and contact your gas supplier or qualified service agency.

5. On indoor heaters, clean room intake openings to ensure adequate flow of combustion and ventilation air.

6. Keep area around heater clear and free from combustible materials, gasoline and other flammable and corrosive vapors and liquids.

IF HEATER WILL NOT FIRE:

If you have no electrical power, it may be that your "circuit breaker" has tripped. Try re-setting it.

If you have electrical power but the heater will not fire check the following or see Troubleshooting section:

1. The time clock must be in the "ON" position.

2. Your pump strainer basket may be full. If so remove debris.

3. Your filter may be dirty. If so, backwash or clean filter. (To tell if your filter is dirty, look to see if the filter pressure will be higher than usual).

4. The pump may have lost its prime and be running dry. Check the pressure on the filter. If there is no pressure; then you are not moving water (or your gauge is broken). Try to get the pump to run at its normal flow rate.

POOL & SPA WATER CHEMISTRY

Chemical imbalance can cause severe damage to your heater and associated equipment. Maintain your water chemistry according to the chart on page 2. If the mineral content and dissolved solids in the water become too high, scale forms inside the heat exchanger tubes, reducing heater efficiency and damaging the heater. If the pH drops below 7.2, this will cause corrosion of the heat exchanger and severely damage the heater. Heat exchanger damage resulting from chemical imbalance is not covered by the warranty.

AUTOMATIC CHLORINATORS AND CHEMICAL FEEDERS

All chemicals must be introduced and completely diluted into the pool or spa water before being circulated through the heater. Do not place sanitizing chemicals in the skimmer. High chemical concentrations will result when the pump is not running (e.g. overnight).

Chlorinators must feed downstream of the heater and have an anti-siphoning device to prevent chemical back-up into the heater when the pump is shut off. A check valve should be installed between the heater outlet and the chlorinator.

See plumbing diagrams on page 24.

NOTE: High chemical concentrates from feeders and chlorinators that are out of adjustment will cause rapid corrosion to the heat exchanger. Such damage is not covered under the warranty.

LO NOx BURNERS

The Lo NOx burners and orifice areas should be inspected annually. Dirt and debris can affect the operation of the heater and could damage the burners or prevent the heater from firing. DO NOT clean the burners with a wire brush.
COLD WEATHER OPERATION

IMPORTANT FREEZE INFORMATION

MODERATE CLIMATE: Heater operation can continue during short-term cold spells. When temperatures are between 0° and 32°F, flow (continuous pump operation) must be maintained.

CAUTION: Do not use the heater to maintain water temperatures just above freezing or for freeze protection. When heater is used during freezing weather, care must be taken to avoid freeze-ups. Continuous pump operation is a must. Additional protection may be required. The heater is not warranted against freeze-ups.

COLD CLIMATE: Prolonged operation with water temperatures below 50°F is not recommended. When starting the heater with water temperatures below 50°F, operate the heater continuously until higher temperatures are reached. Operating the heater for prolonged periods with pool water below 50°F can seriously damage the heater, and is not covered by the warranty.

For cold climate areas, please follow the winterizing procedures listed.

WINTERIZING THE POOL & SPA HEATER

Heaters installed outdoors in freezing climate areas may be shut down for the winter. Observe the following procedure for winterizing the heater:

1. Turn off gas valve, manual gas valve, and electrical supply to the heater.
2. Open drain plug located on the inlet/outlet header, (under water pipes). Remove the heat exchanger inspection panel on the side opposite water piping to gain access to the drain plug on the return header. Open drain plug on return header.

3. For ASME Heaters only: Disconnect compression fittings from the pressure switch and return header that connects to the 1/4" copper tube and allow the tube to drain.
PART TWO
INSTALLATION AND SERVICE INSTRUCTIONS

SECTION 1 - RECEIVING EQUIPMENT
The manufacturer recommends that this manual be reviewed thoroughly before installing your pool/spa heater. If there are any questions that this manual does not answer, please contact the factory or your local representative.
On receipt of your equipment it is suggested that you visually check for external damage to the carton. If the carton is damaged, a note should be made on the Bill of Lading when signing for the equipment. Remove the heater from the carton. If it is damaged, report the damage to the carrier immediately. Save the carton.

These items are shipped inside a box in the carton with the heater:

STANDARD UNIT (POLYMER HEADERS)
1. "Pagoda" top
2. 2" CPVC union with "O" rings (2)
3. Plastic pipe finish flange for gas line
4. Bonding lug with mounting screw (AFT models only)

ASME UNIT (CAST IRON HEADERS)
1. "Pagoda" top
2. In/Out flanges (2)
3. 1-1/2" flange gaskets (2)
4. 2" flange gaskets (2)
5. Flange bolts (4)
6. Pressure relief valve
7. 2" CPVC adapters (2)
9. Bonding lug with mounting screw. (AFT models only)

Be sure that you receive the number of packages indicated on the Bill of Lading.

When ordering parts, you must specify the model and serial numbers of the heater. See below for location of serial number. When ordering under warranty conditions, you must also specify date of installation.

The Model & Serial No. can also be found inside the bezel above the display.
SECTION 2 - GENERAL SPECIFICATIONS

These heaters are design-certified and tested under the latest requirements of the ANSI Z21.56 / CSA 4.7 Standard for Gas-Fired Pool Heaters. All heaters can be used either indoor or outdoors. The appropriate top designated for each type of use is required. If necessary, the top can be changed at a later date to change from outdoor to indoor or vice versa. Millivolt heaters contain a self-generating electrical system operating between .25 and .75 VAC.

Ambient Temperature Rating of Heater Components
Millivolt Heater with Honeywell Gas Valve +32°F to +175°F
Millivolt Heater with Robertshaw Gas Valve 0°F to +175°F
Electronic Ignition Heater* -32°F to +175°F
*Requires 120 or 240VAC Power Supply

Atmospheric heaters:
Rated inputs are suitable for up to 2,000 feet elevation. For elevations above 2000 feet, reduce input 4% for each 1,000 feet above sea level, as high elevation reduces combustion performance.
Lo NOx heaters:
Rated inputs are suitable for up to 5,000 feet elevation. For elevations above 5000 feet, consult the factory.

SECTION 3 - INSTALLATION INSTRUCTIONS

CALIFORNIA PROPOSITION 65 WARNING: This product contains chemicals known to the State of California to cause cancer, birth defects or other reproductive harm.

WARNING: This unit contains refractory ceramic fiber (RCF) insulation in the combustion chamber. RCF, as manufactured, does not contain respirable crystalline silica. However, following sustained exposure to very high temperatures (>2192°F), the RCF can transform into crystalline silica (cristabolite). The International Agency for Research on Cancer (IARC) has classified the inhalation of crystalline silica (cristabolite) as carcinogenic to humans.

When removing the burners or heat exchangers, take precautions to avoid creating airborne dust and avoid inhaling airborne fibers. When cleaning spills, use wet sweeping or High Efficiency Particulate Air (HEPA) filtered vacuum to minimize airborne dust. Use feasible engineering controls such as local exhaust ventilation or dust collecting systems to minimize airborne dust. Wear appropriate personal protective equipment including gloves, safety glasses with side shields, and appropriate NIOSH certified respiratory protection, to avoid inhalation of airborne dust and airborne fiber particles.

IMPORTANT NOTICE
These instructions are intended only for the use by qualified personnel, specifically trained and experienced in the installation of this type of heating equipment and related system components. Installation and service personnel may be required by some states to be licensed. If your state is such, be sure your contractor bears the appropriate license. Persons not qualified shall not attempt to fix this equipment nor attempt repairs according to these instructions.

WARNING: Improper installation, adjustment, alteration, service or maintenance may damage the equipment, create a hazard resulting in asphyxiation, explosion or fire, and will void the warranty.

CODE REQUIREMENTS
NOTE: The heater should not be located in an area where possible water leakage will result in damage to the area adjacent to the heater or to the structure. When such locations cannot be avoided, it is recommended that a suitable drain pan, with adequate drainage, be installed under the heater. The pan must not restrict combustion air flow.

Installation must be in accordance with local codes, or, in the absence of local codes, with the latest edition of the National Fuel Gas Code, ANSI Z223.1/NFPA54 and National Electrical Code, ANSI/NFPA 70, and for Canada, the latest edition of CAN/CSA-B149 Installation Codes, and Canadian Electrical Code, CSA C22.1 Part 1 and Part 2.
OUTDOOR HEATER INSTALLATION

These heaters are design-certified for outdoor installation, when equipped with the approved tops designated for outdoor use.

WARNING: The heater shall not be located in an area where water sprinklers, or other devices, may cause water to spray through the cabinet louvers and into the heater. This could cause internal rusting or damage electrical components, and void the warranty.

WARNING: Do not install within 3 feet of a heat pump or an outdoor condensing unit. Strong air intake from this type of equipment can disturb the combustion process and cause damage or personal injury.

HEATER WITH OUTDOOR STACKLESS TOP

1. Insert tabs into keyhole (4 places).

2. Snap tabs into keyholes so as not to pull out.
Heaters must not be installed under an overhang of less than three 3 ft from the top of the heater. Three sides must be open in the area under the overhang. Roof water drainage must be diverted away from the heaters installed under overhangs with the use of gutters.

For U.S. installations, the point from where the flue products exit the heater must be a minimum of 4 ft below, 4 ft horizontally from, or 1 ft above any door, window or gravity inlet into any building. The top surface of the heater shall be at least 3 ft above any forced air inlet, or intake ducts located within 10 ft horizontally.

For installations in Canada, pool heaters shall not be installed with the top of the vent assembly within 10 ft below, or to either side, of any opening into the building. Refer to the latest revisions of CAN/CSA-B149.

For installations in Florida and Texas, that must comply with the Florida or Texas Building Code, follow the directions on page 14 for the installation of hurricane tie-down brackets for all models.
FLORIDA AND TEXAS BUILDING CODES
WIND SPEED = 150 MPH, 3 SECOND GUST
EXPOSURE = C

206/266/336/406 Atmospheric

<table>
<thead>
<tr>
<th>MODEL #</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td>20”</td>
</tr>
<tr>
<td>266</td>
<td>23”</td>
</tr>
<tr>
<td>336</td>
<td>26”</td>
</tr>
<tr>
<td>406</td>
<td>29”</td>
</tr>
</tbody>
</table>

2” x 6” x 1/8” Pallet Anchor Bracket (4 Total) (Kit# 011636)

(1)–1/4” x 1-3/4” S.S. Tapcon Bolt & Washer (Field Supplied)
Ea. Pallet Anchor Bracket
Use hole closest to unit (4 total)

1/4” x 1-3/4” S.S. Tapcon Bolt & Washer (Field Supplied)
NOTE: Use hole closest to unit with washer overlapping edge of unit.

Min. Edge Distance

3” Min. Conc. Pad by others
INDOOR HEATER INSTALLATION

The heater is also design-certified for indoor installation when equipped with the approved draughtood.

For Canada, indoor installation is restricted to an enclosure that is not occupied and does not directly communicate with an occupied area. Refer to the latest edition of CAN/CSA-B149 for specific requirements. Locate heater as close as is practical to a chimney or gas vent. Heater must always be vented to the outside. See Vent Piping section (pg. 18-19) for details. Minimum allowable space is shown on the nameplate.

WARNING: Indoor heaters require a draughtood that must be connected to a vent pipe and properly vented to the outside. Failure to follow this procedure can cause fire or fatal carbon monoxide poisoning.

OUTDOOR STACK / INDOOR STACK

NOTE: The outdoor and indoor stacks are optional equipment and do not come standard with the heater.

<table>
<thead>
<tr>
<th>OUTDOOR STACK KIT INCLUDES:</th>
<th>INDOOR STACK KIT INCLUDES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Draughtood, painted</td>
<td>(1) Draughtood, unpainted</td>
</tr>
<tr>
<td>(1) Adapter plate</td>
<td>(1) Adapter plate</td>
</tr>
<tr>
<td>(3) Mounting brackets (clips)</td>
<td>(3) Mounting brackets (clips)</td>
</tr>
<tr>
<td>(1) Top panel cover</td>
<td>(3) Screws</td>
</tr>
<tr>
<td>(2) 1-foot sections of metal tape</td>
<td>(1) Instructions</td>
</tr>
<tr>
<td>(3) Screws</td>
<td></td>
</tr>
<tr>
<td>(1) Instructions</td>
<td></td>
</tr>
</tbody>
</table>

** REFER TO INSTALLATION INSTRUCTIONS INSIDE BOX FOR INSTRUCTIONS ON HOW TO INSTALL OUTDOOR/INDOOR STACK.**

<table>
<thead>
<tr>
<th>Model</th>
<th>OUTDOOR STACK</th>
<th>INDOOR STACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>206A/207A</td>
<td>009834</td>
<td>009838</td>
</tr>
<tr>
<td>266A/267A</td>
<td>009835</td>
<td>009839</td>
</tr>
<tr>
<td>336A/337A</td>
<td>009836</td>
<td>009840</td>
</tr>
<tr>
<td>406A/407A</td>
<td>009837</td>
<td>009841</td>
</tr>
</tbody>
</table>
SPECIFICATIONS AND DIMENSIONS

ATMOSPHERIC UNITS

Residential, Copper Heat Exchanger

<table>
<thead>
<tr>
<th>Heater Model</th>
<th>BTUH Input (000)</th>
<th>(A) Cabinet Width x (B) Flue Dia. (C) Indoor Drafthood (D) (J) Min. Gas Conn. Water Conn.</th>
<th>Standard Heater w/Stackless Top</th>
<th>ASME Heater w/Stackless Top</th>
<th>Indoor Drafthood</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-R206A-EN-C</td>
<td>199.5</td>
<td>20" x 6" x 61-5/8" x 10.0" x 11-3/4" x 3/4"</td>
<td>2"</td>
<td>187</td>
<td>296</td>
</tr>
<tr>
<td>P-R266A-EN-C</td>
<td>266.0</td>
<td>23" x 7" x 62" x 11.5" x 11" x 3/4"</td>
<td>2"</td>
<td>210</td>
<td>229</td>
</tr>
<tr>
<td>P-R366A-EN-C</td>
<td>332.5</td>
<td>26" x 8" x 63" x 13.0" x 10-5/8" x 3/4"</td>
<td>2"</td>
<td>230</td>
<td>249</td>
</tr>
<tr>
<td>P-R406A-EN-C</td>
<td>399.0</td>
<td>29" x 9" x 64-9/16" x 14.5" x 12-1/8" x 3/4"</td>
<td>2"</td>
<td>249</td>
<td>268</td>
</tr>
</tbody>
</table>

Residential, Cupro Nickel Heat Exchanger

<table>
<thead>
<tr>
<th>Heater Model</th>
<th>BTUH Input (000)</th>
<th>(A) Cabinet Width x (B) Flue Dia. (C) Indoor Drafthood (D) (J) Min. Gas Conn. Water Conn.</th>
<th>Standard Heater w/Stackless Top</th>
<th>ASME Heater w/Stackless Top</th>
<th>Indoor Drafthood</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-R206A-EN-X</td>
<td>180.0</td>
<td>20" x 6" x 61-5/8" x 10.0" x 11-3/4" x 3/4"</td>
<td>2"</td>
<td>187</td>
<td>206</td>
</tr>
<tr>
<td>P-R266A-EN-X</td>
<td>240.0</td>
<td>23" x 7" x 62" x 11.5" x 11" x 3/4"</td>
<td>2"</td>
<td>210</td>
<td>229</td>
</tr>
<tr>
<td>P-R366A-EN-X</td>
<td>300.0</td>
<td>26" x 8" x 63" x 13.0" x 10-5/8" x 3/4"</td>
<td>2"</td>
<td>230</td>
<td>249</td>
</tr>
<tr>
<td>P-R406A-EN-X</td>
<td>360.0</td>
<td>29" x 9" x 64-9/16" x 14.5" x 12-1/8" x 3/4"</td>
<td>2"</td>
<td>249</td>
<td>268</td>
</tr>
</tbody>
</table>

Commercial, ASME Copper or Cupro Nickel

<table>
<thead>
<tr>
<th>Heater Model</th>
<th>BTUH Input (000)</th>
<th>(A) Cabinet Width x (B) Flue Dia. (C) Indoor Drafthood (D) (J) Min. Gas Conn. Water Conn.</th>
<th>Standard Heater w/Stackless Top</th>
<th>ASME Heater w/Stackless Top</th>
<th>Indoor Drafthood</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-R206A-EN-(C or X)</td>
<td>199.5</td>
<td>20" x 6" x 61-5/8" x 10.0" x 11-3/4" x 3/4"</td>
<td>2"</td>
<td>187</td>
<td>206</td>
</tr>
<tr>
<td>C-R266A-EN-(C or X)</td>
<td>266.0</td>
<td>23" x 7" x 62" x 11.5" x 11" x 3/4"</td>
<td>2"</td>
<td>210</td>
<td>229</td>
</tr>
<tr>
<td>C-R366A-EN-(C or X)</td>
<td>332.5</td>
<td>26" x 8" x 63" x 13.0" x 10-5/8" x 3/4"</td>
<td>2"</td>
<td>230</td>
<td>249</td>
</tr>
<tr>
<td>C-R406A-EN-(C or X)</td>
<td>399.0</td>
<td>29" x 9" x 64-9/16" x 14.5" x 12-1/8" x 3/4"</td>
<td>2"</td>
<td>249</td>
<td>268</td>
</tr>
</tbody>
</table>

Designation for an AFT heater using propane gas is "EP"; an AFT heater using natural gas is "EN".
Designation for a Millivolt heater using propane gas is "MP"; a Millivolt heater using natural gas is "MN".
Prefix "C" is for cast iron (ASME) headers; "P" is for plastic (polymer) headers.
Suffix "X" is for cupro-nickel tubing; "C" is for copper tubing.
Reduce input 4% for each 1000 ft above sea level when installed above 2000 ft elevation.
For Canada, no de-rating is required for elevations up to 4500 ft
Plastic (polymer) headers cannot be used for ASME installations.

*Note: For outdoor stack, use J dimension in the table above for appropriate size PLUS (6) inches
SPECIFICATIONS AND DIMENSIONS

LO NOx UNITS

<table>
<thead>
<tr>
<th>Heater Model</th>
<th>BTUH Input (000)</th>
<th>(A) Cabinet Width</th>
<th>(B) Flue Dia.</th>
<th>(C) Indoor Drafthood</th>
<th>(D) Min. Gas Conn.</th>
<th>Water Conn.</th>
<th>Shipping Weights (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standard Heater</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w/Stackless Top</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASME Heater</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w/Stackless Top</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indoor Drafthood</td>
</tr>
<tr>
<td>R207A</td>
<td>199.5</td>
<td>20"</td>
<td>6"</td>
<td>55-5/8"</td>
<td>10.0"</td>
<td>3/4"</td>
<td>2"</td>
</tr>
<tr>
<td>R267A</td>
<td>266.0</td>
<td>23"</td>
<td>7"</td>
<td>56"</td>
<td>11.5"</td>
<td>3/4"</td>
<td>2"</td>
</tr>
<tr>
<td>R337A</td>
<td>332.5</td>
<td>26"</td>
<td>8"</td>
<td>57"</td>
<td>13.0"</td>
<td>3/4"</td>
<td>2"</td>
</tr>
<tr>
<td>R407A</td>
<td>399.0</td>
<td>29"</td>
<td>9"</td>
<td>58-1/2"</td>
<td>14.5"</td>
<td>3/4"</td>
<td>2"</td>
</tr>
</tbody>
</table>

Designation for an AFT heater using natural gas is “EN”.
Prefix “C” is for cast iron (ASME) headers; “P” is for plastic (polymer) headers.
Suffix “C” is for copper tubing.
For altitudes above 5,000 ft., consult the factory.
For Canada, no de-rating is required for elevations up to 4500 ft.
Plastic (polymer) headers cannot be used for ASME installations.
*Note: For outdoor stack, use J dimension in the table above for appropriate size PLUS six (6) inches.
VENT PIPING

Vent piping the same size as the drafthood outlet is recommended, however, when the total vent height is at least 10 ft (drafthood relief opening to vent terminal), the vent pipe size may be reduced as specified in Chapter 10 of the National Fuel Gas Code, ANSI Z223.1 (Canada-CAN/CSA-B149) and any local codes that may have jurisdiction.

A. All Air From Inside The Building:
Each opening shall have a minimum net free area as noted:

<table>
<thead>
<tr>
<th>Model</th>
<th>Square Inches</th>
<th>Model</th>
<th>Square Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>206/207</td>
<td>200</td>
<td>336/337</td>
<td>333</td>
</tr>
<tr>
<td>266/267</td>
<td>266</td>
<td>406/407</td>
<td>399</td>
</tr>
</tbody>
</table>

B. All Air From Outdoors:
When air is supplied directly from outside the building, each opening shall have a minimum net free area as noted:

<table>
<thead>
<tr>
<th>Model</th>
<th>Unrestricted Opening (sq. in.)</th>
<th>Typical Screened or Louvered Opening (sq. in.)</th>
<th>Typical Screened and Louvered Opening (sq. in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>206/207</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>266/267</td>
<td>67</td>
<td>101</td>
<td>134</td>
</tr>
<tr>
<td>336/337</td>
<td>84</td>
<td>126</td>
<td>168</td>
</tr>
<tr>
<td>406/407</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>

CAUTION: Combustion air must not be contaminated by corrosive chemical fumes which can damage the heater and void the warranty.

COMBUSTION AND VENTILATION AIR (Indoor Units Only)
The heater must have both combustion and ventilation air. Minimum requirements for net free air supply openings are one opening that is 12 inches from the ceiling for ventilation, and one opening that is 12 inches from the floor for combustion air as outlined in the latest edition of the National Fuel Gas Code, ANSI Z223.1 (Canada-CAN/CSA-B149) and any local codes that may have jurisdiction.

A. All Air From Inside The Building:

B. All Air From Outdoors:

VENT PIPING

WARNING: Indoor heaters require a drafthood that must be connected to a vent pipe and properly vented to the outside. Failure to follow this procedure can cause fire or fatal carbon monoxide poisoning.

Vent piping the same size as the drafthood outlet is recommended, however, when the total vent height is at least 10 ft (drafthood relief opening to vent terminal), the vent pipe size may be reduced as specified in Chapter 10 of the National Fuel Gas Code, ANSI Z223.1 (Canada-CAN/CSA-B149). As much as possible, avoid long horizontal runs of vent pipe and too many elbows. If installation requires horizontal runs, the vent pipe must have a minimum of 1/4 in. per ft rise and should be supported at not more than five foot intervals. Plumbers tape, criss-crossed, will serve to space both horizontal and vertical piping. Gas vents supported only by the flashing and extending above the roof more than five feet should be securely guyed or braced to withstand snow and wind loads. We recommend use of insulated vent pipe spacers through the roofs and walls. Another option for installation that requires horizontal runs is using the D-2 power vent kit option.

<table>
<thead>
<tr>
<th>Power Vent Kit</th>
<th>120 VAC Part No.</th>
<th>240 VAC Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206/207</td>
<td>010744</td>
<td>009832</td>
</tr>
<tr>
<td>266/267</td>
<td>010744</td>
<td>009832</td>
</tr>
<tr>
<td>336/337</td>
<td>010745</td>
<td>009833</td>
</tr>
<tr>
<td>406/407</td>
<td>010745</td>
<td>009833</td>
</tr>
</tbody>
</table>

The D-2 Power Vent operates with a positive vent static pressure and with a vent gas temperature that prevents excessive condensate production in the vent, and as such, is a CATEGORY III appliance.

Optional Raypak D-2 Power Vent

For more information consult the D-2 Power Vent manual, (Catalog No. 6000.57.1).

The power vent assembly is a fan-assisted combustion system designed for application to models 206-407. The unit, when installed as directed, is capable of operating in applications such as through-the-wall venting and reduced horizontal and vertical vent pipe sizes in new and current installations. The unit is factory-wired for 240 VAC, with capability of rewiring for 120 VAC.
For protection against rain or blockage by snow, the vent pipe must terminate with a vent cap which complies with the local codes or, in the absence of such codes, to the latest edition of the National Fuel Gas Code, ANSI Z223.1 (Canada - CAN/CSA-B149).

The discharge opening must be a minimum of 2 ft vertically from the roof surface and at least 2 ft higher than any part of the building within 10 ft. Vent stack shall be at least 5 ft in vertical height above the draft hood outlet. The vent cap location shall have a minimum clearance of 4 ft horizontally from, and in no case below, unless a 4 ft horizontal distance is maintained, from electric meters, gas meters, regulators and relief equipment.

The weight of the vent stack or chimney must not rest on heater draft hood. Support must be provided in compliance with applicable codes. The heater top and draft hood must be readily removable for maintenance and inspection. Vent pipe should be adequately supported to maintain proper clearances from combustible construction.

Type "B" double-wall or equivalent vent pipe is recommended. However single-wall metal vent pipe may be used as specified in the latest edition of the National Flue Gas Code ANSI Z223.1 (Canada - CAN/CSA-B149).

Gas piping must have a sediment trap ahead of the heater gas controls, and a manual shut-off valve located outside the heater jacket. All gas piping should be tested after installation in accordance with local codes.

CAUTION: The heater and its manual shut-off valve must be disconnected from the gas supply during any pressure testing of that system at test pressures in excess of 1/2 psi (3.45 kPa). Dissipate test pressure in the gas supply line before reconnecting the heater and its manual shut off valve to gas supply line. FAILURE TO FOLLOW THIS PROCEDURE MAY DAMAGE THE GAS VALVE. OVER PRESSURIZED GAS VALVES ARE NOT COVERED BY WARRANTY. The heater and its gas connections shall be leak tested before placing the appliance in operation. Use soapy water for leak test. DO NOT use open flame.

NOTE: Do not use Teflon tape on gas line pipe thread. A pipe compound rated for use with natural and propane gases is recommended. Apply sparingly only on male pipe ends, leaving the two end threads bare.

SUPPLY PRESSURES

A minimum of 6 in. WC for atmospheric units (5 in. WC for Lo NOx units), and a maximum of 14 in. WC upstream pressure under load and no-load conditions must be provided for natural gas. A minimum of 12 in. WC and a maximum of 14 in. WC are required for propane gas under load and no-load conditions.

NOTE: With venting application of two or more heaters, contact the factory.
GAS PRESSURE REGULATOR

The gas pressure regulator is preset at 4.0 in. WC for natural gas (3.1 in. WC for Lo NOx), and 10.5 in. WC for propane gas. The pressure at the gas valve, taken with a manometer, should be about 4.0 in. WC natural gas (3.1 in. WC for Lo NOx) and 10.5 in. WC propane gas. If an adjustment is needed, remove seal and turn adjustment screw clockwise to increase pressure or counter-clockwise to decrease pressure.

NOTE: Lo NOx gas valves are non-adjustable; settings are fixed by the manufacturer (Invensys/Robertshaw).

GAS PRESSURE ADJUSTMENT LOCATIONS

MILLIVOLT GAS VALVES

Robertshaw 7000 (Heater Models 206-406)

ELECTRONIC IGNITION GAS VALVES

Honeywell VR8304 (Heater Models 206-406 and 207-407)

PIPE SIZING FOR GAS CONNECTIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>P</th>
<th>N</th>
<th>P</th>
<th>N</th>
<th>P</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>206/207</td>
<td>25</td>
<td>60</td>
<td>90</td>
<td>215</td>
<td>360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266/267</td>
<td>15</td>
<td>35</td>
<td>50</td>
<td>125</td>
<td>210</td>
<td>480</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>336/337</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>80</td>
<td>140</td>
<td>320</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>406/407</td>
<td>*</td>
<td>15</td>
<td>20</td>
<td>55</td>
<td>95</td>
<td>225</td>
<td>215</td>
<td>480</td>
</tr>
</tbody>
</table>

A 3/4" gas line can be used for up to 5 ft maximum length from the gas valve in addition to the sediment trap.
FLOW RATES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PIPE SIZE</th>
<th>MIN. GPM</th>
<th>MAX. GPM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>206/207</td>
<td>1-1/4”–1-1/2” - 2”</td>
<td>20</td>
<td>125</td>
</tr>
<tr>
<td>266/267</td>
<td>1-1/4”–1-1/2” - 2”</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>336/337</td>
<td>1-1/4”–1-1/2” - 2”</td>
<td>35</td>
<td>125</td>
</tr>
<tr>
<td>406/407</td>
<td>1-1/4”–1-1/2” - 2”</td>
<td>40</td>
<td>125</td>
</tr>
</tbody>
</table>

*When flow rates exceed maximum GPM an external auxiliary bypass valve is required. See external bypass valve section for details.

POLYMER HEADERS

CAST IRON HEADERS (ASME)

HEAT EXCHANGER PRESSURE DROP TABLES

<table>
<thead>
<tr>
<th>FLOW GPM</th>
<th>PRESSURE DROP (FT OF HEAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>206/207</td>
</tr>
<tr>
<td>20</td>
<td>4.0</td>
</tr>
<tr>
<td>25</td>
<td>4.0</td>
</tr>
<tr>
<td>30</td>
<td>4.0</td>
</tr>
<tr>
<td>35</td>
<td>4.0</td>
</tr>
<tr>
<td>40</td>
<td>4.6</td>
</tr>
<tr>
<td>50</td>
<td>4.6</td>
</tr>
<tr>
<td>60</td>
<td>4.6</td>
</tr>
<tr>
<td>70</td>
<td>4.6</td>
</tr>
<tr>
<td>80</td>
<td>4.6</td>
</tr>
<tr>
<td>90</td>
<td>6.9</td>
</tr>
<tr>
<td>100</td>
<td>8.1</td>
</tr>
<tr>
<td>110</td>
<td>10.4</td>
</tr>
<tr>
<td>120</td>
<td>11.0</td>
</tr>
<tr>
<td>125</td>
<td>11.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLOW GPM</th>
<th>PRESSURE DROP (FT OF HEAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>206/207</td>
</tr>
<tr>
<td>20</td>
<td>1.8</td>
</tr>
<tr>
<td>30</td>
<td>2.2</td>
</tr>
<tr>
<td>40</td>
<td>2.5</td>
</tr>
<tr>
<td>50</td>
<td>2.7</td>
</tr>
<tr>
<td>60</td>
<td>3.3</td>
</tr>
<tr>
<td>70</td>
<td>4.3</td>
</tr>
<tr>
<td>80</td>
<td>5.5</td>
</tr>
<tr>
<td>90</td>
<td>6.8</td>
</tr>
<tr>
<td>100</td>
<td>8.2</td>
</tr>
</tbody>
</table>
POLYMER HEADERS (STANDARD MODELS)
Before attaching the 2-inch unions to the inlet/outlet header, make sure the O-rings are properly seated in the grooves. Use AquaLube or equivalent non-petroleum-based lubricant on the O-ring. **Hand tighten the unions.** Glue PVC piping directly to the unions.

INLET/OUTLET HEADER - POLYMER

High-temperature CPVC header flanges and header flange nuts are provided. **CAUTION:** If there is any possibility of back-siphoning when the pump stops, it is suggested that a check valve (or valves) also be installed in the system.

CAST IRON HEADERS (ASME MODELS)
Heater must be located so that any water leaks will not damage the structure of adjacent area. High temperature 2" plastic pipe (CPVC) may be threaded directly into the header flanges. This is not the same as the Schedule 80 PVC pipe which is also gray. PVC may be used immediately after the supplied CPVC adapters.

NOTE: Some jurisdictions require the addition of a flow switch and T&P gauge on ASME installations. Kit # 013969 can be ordered that will allow a standard ASME unit to comply with the code requirements.

DO NOT use petroleum-based assembly fluids (such as petroleum jelly or lubricating oil). If assembly lube is required, use a silicon base such as AquaLube etc.

There are two sets of flange gaskets supplied with your heater. Use the appropriate gaskets for all your heater connections. Discard unused set.

GASKET DESIGN #1: Accepts 1-1/2" copper tube or 1-1/4" galvanized pipe as a slip connection.

GASKET DESIGN #2: Accepts 2" copper tube as a slip connection. The flange is threaded for 2" screw in pipe connections. Also used with the 2" CPVC adapters.

UNITHERM GOVERNOR OPERATION

CAUTION:
The patented Unitherm Governor is a thermostatic mixing valve specifically designed to maintain constant heater internal temperature between 105° and 115°F despite continually changing flow rates from the filter and changing pool temperatures. This narrow range is needed to prevent damaging condensation on the burners which will occur if the heater runs for any length of time below 100°F. It is also needed to inhibit scale formation in the tubes by maintaining temperatures well below accelerated scaling temperatures.
INTERNAL AUTOMATIC BYPASS VALVE

In addition to the Unitherm Governor, a built-in automatic bypass valve is provided in the in/out header. While the Unitherm Governor responds to the changes in water temperature in the heater, the internal bypass valve automatically responds to changes in water pressure in the piping system. Proper amount of water flow is maintained through the heater under varying pressures dictated by the conditions of the pump and filter.

EXTERNAL AUXILIARY BYPASS VALVE

(Where Required)

An auxiliary bypass valve should be used when flow rates exceed 125 GPM. Usually a high-performance pump size larger than two horsepower will exceed this flow rate. This valve is required to complement the function of the automatic bypass valve, particularly when starting the heater in winter or early spring when the spa or pool temperature is below 50°F. It also serves to eliminate needless pressure drop through the heater and accompanying reduction in the flow rate to the spa jets, etc.

AUXILIARY BYPASS VALVE ADJUSTMENT

To set bypass: With clean filter, adjustment is made by feeling the inlet and outlet pipes at the heater. Outlet pipes should be slightly warmer than inlet and comfortable to the touch. If pipe is hot, close bypass; if cold, open bypass.

PRESSURE RELIEF VALVE INSTALLATION

To conform to local building codes, it may be necessary to install a pressure relief valve. A 3/4" pressure relief valve, having a capacity equal to the BTUH output of the model to be installed, is recommended for this heater. The maximum acceptable pressure relief valve setting is 125 psi.

A 3/4" NPT connection is provided in the Polymer header for installation of a pressure relief valve. The valve shall be installed in a vertical position. Do not overtighten. Install pressure relief valve hand tight plus 1/2 turn.

NOTE: To avoid water damage or scalding due to valve operation, drain pipe must be connected to valve outlet and run to a safe place of discharge. Drain pipe must be the same size as the valve discharge connection throughout its entire length and must pitch downward from the valve. No shut-off valve shall be installed between the relief valve and the drain line. Valve lever should be tripped at least once a year to ensure that waterways are clear.
The heater requires water flow and positive pressure to fire and operate properly. It must therefore be installed downstream of the discharge side of the filter pump. A typical installation is plumbed as follows:
1. The inlet side of the filter is plumbed directly to the discharge side of the filter pump;
2. The outlet side of the filter is then plumbed to the inlet of the heater; and
3. The outlet of the heater is plumbed to the return line to the pool or spa. The pump, filter and heater are thus plumbed in series (Salt generators and chemical feeders must be down stream of the pool heater).

Plumbing from the heater back to the pool or spa must not have any valves or restriction that could prevent flow when the pump is operating.

CAUTION: An additional source of heated water, e.g. a solar system, must be connected to the main line ahead of the heater inlet pipe in order for it to act as the primary heat source. If the primary system provides adequate heat to maintain set-point, the heater will not fire. Be advised that the control panel will then display sensed water temperatures downstream of the primary heating system, rather than the temperature of the water exiting the pool.

Heater must be located so that any water leaks will not damage the structure of adjacent area. PVC pipe may be glued directly into header unions (Standard models only).
HEAT EXCHANGER REVERSAL PROCEDURE - STANDARD MODELS

1. Remove right and left side access panels (Figure 1).
2. Disconnect wires at high limit, AGS (automatic gas shut-off), and pressure switch on the in/out header (Figure 2).
3. **AFT Models:** Remove the thermostat temperature sensor by loosening the compression fitting nut (Figure 3). Re-route the sensor to the left side of the heater.
4. **Millivolt Models:** Remove the temperature sensor bulb and retainer clip from the sensor well (Figure 4). Re-route the sensor bulb to the left side of the heater.
5. Remove (12) bolts holding the inlet/outlet and return headers to the tube sheets. Clean off tube sheet area where the gasket seats. Also clean off the header and the gasket. Apply a non-petroleum-based lubricant to the gasket such as AquaLube. Re-attach the headers to the opposite sides, making sure they are installed in an upright position (Figure 5). **Do not over tighten.** Torque should not exceed 7 ft/lb.
6. Reconnect high limit, AGS, and pressure switch wires.
7. **AFT Models:** Insert the temperature sensor into the compression fitting, so that the sensor is flush with the top of the fitting. Tighten 1/2 turn past hand-tight.
8. **Millivolt Models:** Insert sensor bulb and retainer clip into sensor well.
9. Allow for water flow through the heater and check for leaks.
10. Re-attach access panels to the opposite sides.

For ASME Models call your factory representative.
ELECTRICAL WIRING

NOTE: If it is necessary to replace any of the original wiring, use 105°C wire or its equivalent, and/or 150°C wire or its equivalent, like the original wiring.

MILLIVOLT MODELS

The Millivolt models are equipped with a self-generating electrical system in which the electrical current is provided by a pilot generator. No external electrical connections are required.

When installing a remote switch, do not exceed 10 ft of wiring from the heater. Use 18-gauge stranded wire.

ADVANCED FLAME TECHNOLOGY (AFT) MODELS

WARNING:

Heaters are factory-wired for 240 VAC power supply. **DO NOT attempt to operate at 208 VAC.**

The standard field-wiring connection is on the right side of the heater.

To wire the heater from the left side, follow these steps:
1. Remove the two (2) screws that hold the front door to the heater. Remove and set aside door for better access to wiring.
2. Remove the four (4) screws that hold down the junction box to the sway brace.
3. Remove the transformer cover located on the far right by removing one (1) screw.
4. Remove the two (2) screws that hold down the transformer.
5. Remove the one (1) screw that holds down the ground wires.
6. Disconnect P6 connector from PC board.
7. Remove transformer from its current location and relocate it on the far left side of the heater.
8. Re-route all high-voltage wires and ground wires through the left jacket side of heater.
9. Re-install P6 connector, ground wires (SPG), transformer, junction box, front door, and plug right side with the left side's grommet plug.

NOTE: 7/8" dia. holes not utilized on jacket and control box can be used for fireman switch, auxiliary control interface or power vent (D-2) wiring.

CAUTION: Heater must be electrically grounded and bonded. Bonding lug is provided loose with the heater. Install bonding lug on lower right or left side of jacket as necessary for bonding the heater. Mounting hole is provided on the jacket.

NOTE: Failure to ground the heater electrically could affect the heater's electronics.

The Electronic Intermittent Ignition Device automatically lights the pilot and main burners upon a call for heat. The heater is supplied with a dual-voltage transformer for 120 VAC or 240 VAC input power hookup.

NOTE: See page 38 for further instructions if using a time clock/fireman's switch.
TRANSFORMER WIRING

120 VAC WIRING
For 120 VAC input power to the unit, connect the black wire to the “L1” or hot leg of the power supply. Connect the white wire to the “Ret” or neutral leg of the power supply. Attach the wire nut to the red wire. **There should be no connection to the red wire for 120 VAC operation.** For Lo NOx pool heaters attach a wire nut to each red wire independently.

240 VAC WIRING
For 240 VAC input power to the unit, connect the black wire to the “L1” or hot leg of the power supply. Connect the red wire to the “L2” or second hot leg of the power supply. Attach the wire nut to the white wire. **There should be no connection to the white wire for 240 VAC operation.** For Lo NOx pool heaters attach a wire nut to each white wire independently.

WARNING: DO NOT attempt to operate the heater at 208 VAC.

Heater must be electrically grounded and bonded in accordance with local codes, or, in the absence of local codes, with the latest edition of the National Electrical Code, ANSI/NFPA 70. (Canada - Canadian Electrical Code, CSA C22.1, Part 1 and Part 2.)

NOTE: If the transformer’s primary side is wired for 120 VAC and 240 VAC is applied, damage to the transformer and PC board may result. Such damages are not covered under manufacturer’s limited warranty.

NOTE: Input power to the heater (120 or 240 VAC) can be supplied from the load (pump) side of time clock or directly from the GFCI power source. **It is preferred that full-time power be supplied to the heater from the GFCI power source, and that the heater be controlled by the fireman’s switch connection or using a two or three-wire remote.** See pages 36-38. If using a switched GFCI power source, the heater could display false service indicators on the display panel if the pump is turned off.
WIRING DIAGRAM - MILLIVOLT (MECHANICAL THERMOSTAT)

WIRING DIAGRAM STANDING PILOT MILLIVOLT

HEATER INPUTS: 199,500 THRU 399,000 BTUH

HEATER SIZE: 206–406 HEATER TYPE: P

KEY

- - 105°C
- - 150°C

WIRE NUT

BK = BLACK
BR = BROWN
BL = BLUE
G = GREEN
O = ORANGE
R = RED
V = VIOLET
W = WHITE
Y = YELLOW

V/BK = VIOLET WITH BLACK STRIPE
Y/BK = YELLOW WITH BLACK STRIPE

REPLACE WIRING WITH 105°C WIRE OR 150°C WIRE AS NOTED
SECTION 4 - SERVICING INSTRUCTIONS
GENERAL LOCATION OF CONTROLS

ATMOSPHERIC

Drain Plug (Located in rear header)
AFT Thermostat Circuit Board
Roll-Out Switch
Gas Valve
Pilot

Unitherm Governor
Mounted On Top Of Header
HL1 - High Limit
HL2 - High Limit
Pressure Switch
Temp Sensor/Well
Transformer

Drain Plug

LO NOx

Drain Plug (Located in rear header)
AFT Thermostat Circuit Board
Roll-Out Switch (Manual)
Gas Valve
Air Switch
Pilot

Unitherm Governor
Mounted On Top Of Header
HL1 - High Limit
HL2 - High Limit
Pressure Switch
Temp Sensor/Well
Transformer
Control Panel Removal

1. Remove screw from front door. Set aside door for serviceability.

2. Remove (4) screws from sides of control panel.
3. Rotate control panel down until panel stops. Do not force.

Note: Caution must be used to not damage controls or wiring.

Control Adjustments - Millivolt Models

The water temperature is controlled by the heater thermostat on the upper front panel of the heater. The control center contains an On/Off switch and one thermostat.

The thermostat is fitted with a means of limiting the upper temperature limit below the maximum level. The knob stop adjustment ring illustrated below is adjustable by loosening the set screw, rotating the knob stop ring to the desired location and re-tightening the set screw.

Control Adjustments - Advanced Flame Technology (AFT) Models

Temp Adjust Buttons
Mode Button

LCD Display

spa temperature range
pool temperature range
stand-by temperature

Knob Stop Ring
Set Screw

Knob Stop Shown Above is in the Spa Temperature Range
The pool heater touchpad, located on the upper front panel of the heater, allows the user to select either POOL or SPA operation, and to adjust the setpoint temperature. The LCD display window indicates the mode (OFF, SPA, POOL) and the actual water temperature. A manual power switch provided below the touchpad turns the control power ON or OFF.

Mode Button
The MODE button is used to select either POOL or SPA operation. It also allows the user to turn the heater off electronically, allowing the LCD display to remain energized and to continue showing the actual water temperature.

Temp Buttons
If the heater is in POOL or SPA mode, the desired water temperature (SETPOINT) will also be displayed and may be adjusted using the UP or DOWN buttons.

Operation
In the POOL or SPA modes, the actual water temperature is displayed along with the desired water temperature (SETPOINT). When the water temperature is above the setpoint, “Water Temp” will alternate with “No Demand.” When the water temperature is below the setpoint and the heater is firing, “Water Temp” will alternate with “Heating.”

To adjust the setpoint temperature, make sure the control is in the appropriate mode (POOL or SPA) and push the UP or DOWN buttons.

Service Menu and Fault History
To access the Service Menu and fault history, press the MODE and UP buttons simultaneously for 3 to 5 seconds. The heater will continue to operate normally while in the Service Menu. The first screen displayed is the Flame Strength indicator, which indicates the pilot flame current using a bar graph and numerical display. A signal of less than 4 indicates a weak flame signal and may require service. Refer to Section 5 – Troubleshooting for possible causes and corrections.

FLAME STRENGTH INDICATOR
Press the DOWN button. The Supply Voltage screen indicates the voltage supplied to the control board. Normal readings range from 24 to 29 volts.

SUPPLY VOLTAGE INDICATOR
Press the DOWN button. The Run Time indicates the total hours of operation for the pool heater, as measured by the amount of time that the main gas valve has been powered. The Cycle count indicates the number of on/off cycles of the heater, as measured by the number of times the pilot valve has been powered.

RUN TIME INDICATOR
Press the DOWN button. The Fault History can display up to ten faults in memory. The order of the faults begins with “Fault Last,” which is the most recent fault, and proceeds through ten most recent messages in chronological order. The second line of the display shows the fault message. If there are no faults in the history buffer, the second line reads “All Faults Clear.”

FAULT HISTORY
Program Button
1) Remove the four screws holding the control cover, and swing the panel down so the back side of the board is visible (see page 31). Locate the Program Mode button (marked as SW1) as shown on page 33. Press and hold the button (5-7 seconds) until Set Factory Defaults appears on the display. Release the program button.

2) Press the Mode button sequentially until the desired program event is reached. There are 5 different events that can be programmed. They appear in the sequence listed below:

- **Set Factory Defaults**: Resets board to factory default settings.
- **Defaults Set**: Resets faults in the History File.
- **Clear Faults**: Change from Fahrenheit to Celsius.
- **Spa Max Temp – Spa Set Point Maximum Adjustment**: SPA setpoint maximum adjustment.
- **Pool Max Temp – Pool Set Point Maximum Adjustment**: POOL setpoint maximum adjustment.

Set Factory Defaults
Refer to step one above to access the program screen. Set Factory Defaults should appear on the screen. If it does not, press the Mode button until Set Factory Defaults appears on the digital display. Press and hold both UP and DOWN buttons for 5-7 seconds until Defaults Set appears. This operation resets the operating program to its factory default values. Both the POOL and SPA setpoints will revert to 65°F (18.5°C) and both POOL and SPA maximum temperature settings will be 104°F (40.0°C). The Control Lockout PIN will be cleared and the control will resume normal operation.

Clear Faults
Refer to step one above to access the program screen. Press the Mode button until Clear Faults appears on the digital display. Press and hold both UP and DOWN buttons for 5-7 seconds until Faults Cleared appears. This operation resets the Fault History file to “0” and clears all the stored faults.

Fahrenheit or Celsius
Refer to step one above to access the program screen. Press the Mode button until Fahrenheit or Celsius appears on the digital display. The digital display is capable of displaying Celsius as well as Fahrenheit temperatures. The UP or DOWN buttons will select Fahrenheit or Celsius on the temperature display. Choose the desired temperature scale.

Spa Max Temp – Spa Set Point Maximum Adjustment
Refer to step one above to access the program screen. Press the Mode button until Spa Max Temp appears on the digital display. Using the UP and DOWN buttons will change the Maximum Temperature Setting to your desired value. The control can be set for a maximum of 107°F.

Pool Max Temp – Pool Set Point Maximum Adjustment
Refer to step one above to access the program screen. Press the Mode button until Pool Max Temp appears on the digital display. Using the UP and DOWN buttons will change the Maximum Temperature Setting to your desired value. The control can be set for a maximum of 107°F.

Control Lockout
The heater is equipped with a Control Lockout feature to prevent unauthorized tampering or adjustment of the control settings. To lock out the controls, press the DOWN button and Mode button for 5 seconds. Choose a three digit PIN, using the UP and DOWN buttons to select the digits and the Mode button to lock in selections. Confirm your selection and record your PIN.

To unlock the controls, press any button to bring up the Enter PIN menu. Enter the PIN that was used to lock the control. Note that power cycling will not clear the lockout. Successfully unlocking the control will display “Lockout Cleared.” Failure to enter the correct PIN will display “Invalid PIN.”

In the event that the user-selected PIN is lost or does not clear the Control Lockout, use the Program Button to Set Factory Defaults. This will clear the PIN and allow normal operation and selection of a new PIN if desired. See the Program Button directions on this page for details.

NOTE: Both the POOL and SPA setpoints will revert back to 65°F (18.5°C) and the POOL and SPA maximum temperature settings will be 104°F (40.0°C). These setpoints will need to be readjusted to desired settings.
STATUS AND DIAGNOSTICS

The digital thermostat models are programmed to display a variety of status and diagnostic messages, depending on the operating conditions.

The following heat status messages are displayed in Pool, Spa, and Remote modes when there are no active fault conditions.

<table>
<thead>
<tr>
<th>Display</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating</td>
<td>Call for heat established, flame present</td>
</tr>
<tr>
<td>Spark</td>
<td>Spark operating</td>
</tr>
<tr>
<td>No Demand</td>
<td>Heat demand is satisfied</td>
</tr>
</tbody>
</table>

The following conditions are displayed only while there is a demand for heat present.

<table>
<thead>
<tr>
<th>Display</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Sw Open</td>
<td>Water pressure switch open.</td>
</tr>
<tr>
<td>Vent/Field Sw #1</td>
<td>Vent spill switch/field switch #1 open.</td>
</tr>
<tr>
<td>Hi Limit 1 Fault</td>
<td>High limit 1 open.</td>
</tr>
<tr>
<td>Hi Limit 2 Fault</td>
<td>High limit 2 open.</td>
</tr>
<tr>
<td>Rollout Sw Open</td>
<td>Rollout switch open.</td>
</tr>
<tr>
<td>Flow/Field Sw #2</td>
<td>Field-supplied flow switch/field switch #2 open.</td>
</tr>
<tr>
<td>Fan Lockout</td>
<td>3 fan switch faults within same heat demand cycle, power must be cycled to clear the fault.</td>
</tr>
<tr>
<td>Fan 5 Min Delay</td>
<td>Heater shut down for 5 minutes because LoNox fan switch didn't close.</td>
</tr>
<tr>
<td>Ignition Lockout (Propane Tab Broken)</td>
<td>Alternating with “No pilot sensed” - Pilot flame not established within the required time (15 sec or 90 sec). Alternating with “Main Ign Failure” - Pilot flame lost during the 8 second trial to ignite the main burner.</td>
</tr>
<tr>
<td>Ignition Failure (Propane Tab Not Broken)</td>
<td>Alternating with “No pilot sensed” - Pilot flame not established within 90 seconds.</td>
</tr>
<tr>
<td>Ign 6min Delay (Propane Tab Not Broken)</td>
<td>Alternating with “Main Ign Failure” - Pilot flame lost 4 times within the 8 second trial to ignite the main burner. Heater will lockout for 6 minutes before retrying.</td>
</tr>
</tbody>
</table>

NOTE: The LCD temperature display may not agree with the temperature reading of your pool or spa thermometer. The heater reads the water temperature at the inlet. Due to the circulation characteristics of any pool or spa, the water temperature at the inlet to the heater may differ from that observed at a given location in the pool or spa.

<table>
<thead>
<tr>
<th>Display</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Failure</td>
<td>Thermistor temperatures disagree by more than 2°F</td>
</tr>
<tr>
<td>Sensor Open</td>
<td>Thermistor sensor failed open. (Below -20°F)</td>
</tr>
<tr>
<td>Sensor Short</td>
<td>Thermistor sensor failed short. (Above 217°F)</td>
</tr>
<tr>
<td>Flame w/o CFH</td>
<td>Board is sensing flame when both main and pilot valves are command-ed shut.</td>
</tr>
<tr>
<td>PV Output Fault</td>
<td>Pilot gas valve output is not in commanded state.</td>
</tr>
<tr>
<td>MV Output Fault</td>
<td>Main gas valve output is not in commanded state.</td>
</tr>
<tr>
<td>LoNox Tab Fault</td>
<td>Voltage is sensed at the Lo NOx terminal on a non-Lo NOx heater (Lo NOx tab is intact).</td>
</tr>
<tr>
<td>Internal Fault</td>
<td>Board fault, replace board.</td>
</tr>
<tr>
<td>EEPROM Fault</td>
<td>Memory fault, reset set points, replace board if fault does not clear.</td>
</tr>
<tr>
<td>Clock/ Fireman Sw</td>
<td>Time clock/fireman switch circuit is open.</td>
</tr>
<tr>
<td>Low Temp Lockout</td>
<td>Water temperature below 36°F.</td>
</tr>
</tbody>
</table>
REMOTE CONTROL INSTALLATION AND OPERATION

CAUTION: Before installing remote controls to the AFT thermostat model heaters, read the following:

The digital thermostat model is remote-ready in most cases. The digital liquid crystal display (LCD) shows the actual pool temperature, operating status, and service codes (See examples below). The touch pad on the control panel allows you to select the desired pool or spa temperature. It also indicates when a remote system is controlling the heater by displaying Remote in the display. When connecting the heater to a remote system, identify whether it is a two- or three-wire remote system. Select the appropriate instruction listed below to properly install the remote to the heater.

REMOTE OPERATION

The AFT model heaters are equipped with the ability to work with external remote controls. The supplied 7-pin remote wiring connector supplies power out to either a toggle switch or the switch contacts of a third party remote. The remote works by either making or breaking the circuit created by the remote wiring. Typically, a remote does not supply power to the heater, it only provides a switching function to turn the heater On or Off. **If your remote is supplying its own voltage to the heater, it will not work with this heater and may damage the digital circuit board.**

For operation of the heater using the onboard thermostatic controls with a time clock, see the “Time Clock / Fireman’s Switch” section.

ACTIVATING THE REMOTE

To activate or deactivate the remote function, follow these steps:

Press and hold the UP and DOWN arrow buttons for 3 to 5 seconds.

The second line of the display will alternate even when the unit is off (“No Demand”).

Note: Electrostatic Discharge (ESD) damage can be caused by direct or indirect contact with the wiring or circuit board. When one walks to the heater area, an electrostatic charge accumulates on the body. Contact of a finger allows the body to discharge, possibly causing device damage. This damage can be limited if the service person discharges himself, following ESD preventive/removal practices, and holds on to the heater enclosure for 5 seconds before proceeding.

ATTENTION

OBSERVE PRECAUTIONS ELECTROSTATIC SENSITIVE DEVICES

REMOTE MODE

- Off Water Temp 69F
- Off No Demand
- Pool Set 85F Water Temp 80F
- Spa Set 85F Water Temp 80F
- Remote Water Temp 69F
- Remote No Demand

Heating in the POOL Mode

- Pool Common (BLK/ORN)
- Spa Common (ORN/BLK)
- 24VAC HOT (BLU)

Heating in the SPA Mode

Remote Mode

7-PIN Remote Interface Harness

Pool Common

BLK/ORN

Spa Common

ORN/BLK

24VAC HOT

BLU

AC TIVATING TH

THE REMOTE

To activate or deactivate the remote function, follow these steps:

Press and hold the UP and DOWN arrow buttons for 3 to 5 seconds.

The second line of the display will alternate even when the unit is off (“No Demand”).

Remote Pool 85F Water Temp 80F

Remote Spa 85F Water Temp 80F

Remote Pool 85F Heating

Remote Spa 85F Heating

NOTE: When in remote operation, the keypad mode and temp buttons are disabled.
REMOTE CONTROL WIRING

Important Installation Notes for Remote or External Wiring Configuration

- Remote wiring must be run in a separate conduit.
- Remote wiring must not be run parallel to high voltage lines.
- For runs of under 30 feet, remote wiring should have stranded conductors with a minimum of 22 AWG, 600V, cable twisting 1.5 to 2.5 in. lay and jacketed.
- For runs over 30 feet, the conductors should be a minimum of 20 AWG, 600V, cable twisting 1.5 to 2.5 inch lay that is shielded and jacketed.
- Maximum cable length is 200 feet.
- For both two- and three-wire remote systems, the provided 7-pin wiring connector must be utilized. Please refer to the wiring instructions.

NOTE: The remote wires must be connected to the 7-pin connector before the connector is plugged into the board.

2-Wire Remote Control (On-Off)

This application assumes that only one heating function (pool or spa) is required.

1. Turn on power to the heater.
2. For a 2-Wire Remote Control from a remote without its own sensor, push the mode button to the “POOL” or “SPA” mode and set the desired setpoint (eg. 102 °F for Spa).
3. For a 2-Wire Remote Control from a remote with its own sensor, push the mode button “POOL” or “SPA” mode and set the temperature to the highest setting available on the control. The actual setpoint will be controlled by the remote control.
4. Turn the mode button to "OFF" and remove power from the heater.
5. On the "Remote Interface Harness", connect the BLUE wire to one side of the "REMOTE" switch and connect the other side to either the ORANGE/BLACK wire for "SPA" operation or the BLACK/ORANGE wire for "POOL" operation.
6. Attach wire nut on unused wire to the "Remote Interface Harness."
7. Install the "7-Pin Remote Interface Harness" to the P8 connector and turn power “On” to the heater.

To activate the remote control, see page 36.

3-Wire Remote Control Using Three-Position Switch (Pool-Off-Spa, or Low-Off-High)

This application assumes that both heating functions (pool and spa) are required.

1. Turn on power to the heater.
2. Push the mode button to the "POOL" or "SPA" mode and set the desired temperature for each (eg. 80°F for Pool and 102°F for Spa).
3. Turn the mode button to "OFF" and remove power from the heater.
4. On the "Remote Interface Harness" connect the BLUE wire to one side of the "REMOTE" switch and connect the ORANGE/BLACK wire for "SPA" operation and the BLACK/ORANGE wire for the "POOL" operation.
5. Install the "Remote Interface Harness" to the P8 connector and turn power "ON" to the heater.

To activate the remote control, see page 36.
FLAME ROLL-OUT SAFETY SWITCH

Atmospheric heaters are equipped with a thermal cutoff device to prevent flame roll-out in the event the heat exchanger becomes blocked. This is a "single-use" type fusible link or thermal fuse, that must be replaced when disabled by an over-temperature condition, caused by excessive restriction in the heat exchanger flue passage.

HIGH LIMITS

The heater is equipped with two automatic high limits. Both are located in the inlet/outlet header. Both are set to open at 135°F.
NOTE: An erratic high limit is often characteristic of an internal heat exchanger problem, e.g. scale build-up, defective bypass. Refer to Troubleshooting section (starting on page 43).

HIGH LIMIT REMOVAL

1. Shut off main electrical power switch to heater.
2. Remove inlet/outlet inspection panel.
3. Remove defective high limit and replace with a new high limit.
4. Replace inspection panel.

PILOT SAFETY - Millivolt Models

Heaters equipped with the standing pilot (millivolt system) have pilot generators which act as a safety device to shut off the flow of gas to the main burners and the pilot burner in case the pilot flame is extinguished. The pilot burner must be manually re-lighted to place the heater in operation again. Refer to the lighting instructions provided on the heater label.

PILOT SAFETY - AFT Models

The heater employs a pilot safety which closes the main gas valve within 8/10ths of a second whenever the pilot flame is interrupted. The pilot flame is automatically lit when the device is powered. The heater performs its own safety check and opens the main valve only after the pilot is proven to be lit.

BURNER TRAY REMOVAL - ATMOSPHERIC MODELS

1. Shut off main electrical power switch to heater.
2. Shut off gas upstream of heater.
3. Remove front door.
4. Disconnect gas line from gas valve.
5. Remove (2) screws that mount burner tray to unit, and (2) screws that secure gas valve to jacket.
6. Disconnect wires that terminate at gas valve.
7. Disconnect hi-tension wire from PC board.
8. Slide out burner tray.
9. Reverse above procedure to reinstall.

GAS VALVE REMOVAL - ATMOSPHERIC MODELS

1. Shut off gas supply to the heater. Remove gas piping to gas valve inlet.
2. Disconnect wires, pilot tubing and bleed line, if required.
3. Remove burner tray from heater.
4. Turn vertical gas pipe from manifold slightly and unscrew gas valve.
5. Reverse above procedure to reinstall.

MAIN BURNER AND ORIFICE REMOVAL - ATMOSPHERIC MODELS

1. Remove burner tray.
2. Remove screws and burner hold-down bracket.

NOTE: If the heat exchanger is sooted badly, the burner hold-down bracket and spacer can become distorted from direct-flame impingement and this usually necessitates replacement of these parts.

3. Lift burners from slotted spacers and slide from orifices. Clean with a wire brush.
4. Orifices usually do not need to be replaced. To clean, run either copper wire or wood toothpick through orifice. Do not enlarge hole. To remove orifice, use a socket wrench and remove from manifold. DO NOT overtighten when reinstalling.

PILOT REMOVAL AND CLEANING

1. Disconnect pilot tubing and wires from gas valve.
2. Remove pilot assembly from burner tray.
3. Remove pilot from bracket.
4. Remove pilot orifice and air opening (Honeywell MV unit only), and clean with wire or small brush.

CAUTION! Do not enlarge hole in pilot orifice.

5. Reverse above procedure to reinstall.

HONEYWELL MILLIVOLT PILOT

ROBERTSHAW MILLIVOLT PILOT
HEAT EXCHANGER REMOVAL
1. Shut water, gas and electricity off, close valves and relieve pressure, then remove relief valve. Remove side inspection panels.
2. Remove top jacket holding screws.
3. Remove rear top panel.
4. Remove screws mounting the rain shield to the rear panel. Also remove the screws that mount the rain shield to the sway brace. Remove rain shield.
5. Remove the four (4) screws holding down the flue collector. Remove the flue collector.
6. Disconnect flange nuts on Inlet/Outlet header, loosen union(s) at gas pipe and slide heater away from piping.
7. Lift heat exchanger straight up using caution not to damage refractory.
8. Reverse above procedure to reinstall. Make sure the insulation strips are properly replaced on top of the refractory retainer.

TUBE CLEANING PROCEDURE
Establish a regular inspection schedule, the frequency depending on the local water conditions and the severity of service. Do not let the tubes clog up solidly. Clean out deposits over 1/16” in thickness.

The heater may be cleaned from the return header side, without breaking pipe connections. It is preferable, however, to remove both headers for better visibility through the tubes and to be sure the ground-up lime dust does not get into the system.

Note that you do not remove the top panel or the heater exchanger, generally.

After reaming, mount the wire brush in place of the auger and clean out debris remaining in the tubes.

Another method is to remove the heat exchanger, ream tubes and immerse heat exchanger in non-inhibited de-scale solvent for severe scale build-up.

DESOOTING PROCEDURE

WARNING: SOOT IS COMBUSTIBLE. EXERCISE EXTREME CARE.

Soot will clog areas between fins and cause eventual tube failure. Any sign of soot at the base of the burners or around the outer jacket indicates a need for cleaning.
1. Remove top and flue collector from cabinet.
2. Remove "V" baffles from heat exchanger.
3. Remove burner tray. (See page 39).

4. Remove heat exchanger from the heater and wash with a garden hose, making sure soot is removed from spaces between fins.
5. Reverse above procedure to reinstall.

NOTE: In extreme cases it may be necessary to do steam cleaning at the local car wash. DO NOT WIRE BRUSH.

COMBUSTION CHAMBER REMOVAL
To remove combustion chamber, you must first have removed the heat exchanger.

REFRACTORY PANELS - TOP VIEW

IMMERSION WELL REPLACEMENT
(Millivolt and ASME)
1. Shut off water to heater and drain heat exchanger.
2. Remove access panel on water connection side.
3. Remove old immersion well with bushing and sleeve.
4. Install replacement well in header.

NOTE: Installation in polymer header should be hand tight plus 1/2 turn.

Well Assembly
LO NOx POOL HEATERS

The Lo NOx pool heaters are certified and tested under the ANSI Z21.56/CSA 4.7 Standard for Gas-Fired Pool Heaters.

The heater should be installed to meet all local codes, and the latest editions of the National Fuel Gas Code Z223.1 and the National Electrical Code, ANSI/NFPA 70.

OPERATION
On call for heat, the ignition system, consisting of an electronic spark module, gas valve and pilot system, is energized. Providing the pilot is proven, the blower will start running, the main gas valve will open and the heater will operate. When the operating control is satisfied the heater will shut down.

START-UP PROCEDURES
1. Turn on power to the heater with gas supply off.
2. Turn on gas supply.
3. Set controller to call for heat.
4. System should start as follows:
 a. Spark will turn on, pilot gas valve will open, and the blower will begin running.
 b. Once the blower provides pressure, the main gas valve will open.
 c. Heater will operate until call for heat is satisfied.

NOTE: Door must be in place for proper operation.

BLOWER ADJUSTMENT
This Lo NOx pool heater is equipped with a combustion air plate (baffle) mounted on the air intake to the combustion air blower. The baffle has a hole that is utilized to control the air inlet to the blower.

When the combustion air setting is proper, there will be some lifting of the flames on some areas of the burner deck under cold-start conditions. After about five minutes of operation, the flames should settle down and blue tips should become visible. Lifting of flames beyond five minutes would indicate too much combustion air.

VISUAL INSPECTION
Flames can be observed through the opening below the plenum. Flame color is blue and evenly spread on the top surface of the burner. At least every three months a visual inspection should be made of the burners.

ELECTRICAL
Be sure that electrical service to the heater has proper overload fuse or circuit breaker protection, wire size and connections which comply with all applicable codes.

FLAME ROLL-OUT SAFETY SWITCH
Lo NOx heaters are equipped with a thermal cut-off device to prevent flame roll-out in the event the heat exchanger becomes blocked. It is a "manual reset" type roll-out switch that must be reset by a service technician after any over-temperature conditions have been fixed. Excessive restriction in the heat exchanger flue passage may cause the switch to disable the heater.
LO NOx HEATERS (CONTINUED)

BURNER TRAY REMOVAL

1. Shut off main electrical power switch to heater.
2. Shut off gas upstream of heater.
3. Remove front door.
4. Disconnect gas line from gas valve.
5. Remove (2) screws that mount burner tray to the base of the unit, and (2) screws that mount the blower box to the burner tray, and (1) screw that secures the anti-rotation bracket to the heater.
6. Disconnect wires that terminate at gas valve.
7. Unscrew (4) screws that secure the control box.
8. Disconnect pilot wire from the pilot assembly.
9. Disconnect wire connector from the combustion blower.
10. Carefully slide out the burner tray assembly.
11. Reverse above procedure to reinstall.

GAS VALVE REMOVAL

1. Remove burner tray, following above procedure.
2. Disconnect, pilot tubing from gas valve.
3. Remove (2) screws that mount anti-rotation bracket to the burner tray.
4. Turn vertical gas pipe from manifold slightly and unscrew gas valve.
5. Reverse above procedure to reinstall.

MAIN BURNER AND ORIFICE REMOVAL

1. Remove burner tray, following above procedure.
2. Remove pilot. See pilot removal procedure.
3. Remove (8) total screws from the burner hold-down brackets, front and rear of tray.
4. Remove (8) total screws from the left and right sides of the manifold assembly. Detach the air/gas manifold assembly from the burner tray assembly.
5. Remove burners by raising them straight up off the rear end slots.
6. Use a long 9/16" socket wrench to remove orifice from the gas manifold.
7. Reverse above procedure to reinstall.

PILOT REMOVAL

1. Disconnect pilot tubing from gas valve.
2. Remove the pilot wire from the pilot assembly.
3. Remove (2) screws that mount the pilot assembly to the burner tray.
4. Pull the pilot assembly downwards and outwards.
5. Reverse above procedure to reinstall.

COMBUSTION BLOWER REMOVAL

1. Remove the (2) screws that secure the blower box to the burner tray.
2. Remove (2) screws that mount the blower box to the base of the heater.
3. Disconnect wire connector from the combustion blower.
4. Carefully remove blower box with combustion blower.
5. Remove (2) screws that secure combustion blower to blower box.
6. Reverse above procedure to reinstall.
SECTION 5 - TROUBLESHOOTING

MECHANICAL

IMPORTANT NOTICE These instructions are intended for the use of qualified personnel who are specifically trained and experienced in the installation of this type of heating equipment and related system components. Installation and service personnel may be required by some states to be licensed. Persons not qualified shall not attempt to install this equipment nor attempt repairs according to these instructions.

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonics, or whining noise</td>
<td>U.G. inoperative................................</td>
<td>Check movement by putting in hot water (110°F or higher).</td>
</tr>
<tr>
<td></td>
<td>*Debris or restriction in system............</td>
<td>If no movement, replace.</td>
</tr>
<tr>
<td></td>
<td>*Debris in gas line...........................</td>
<td>Locate the restriction and remove. Flush system and clean.</td>
</tr>
<tr>
<td></td>
<td>Low flow...</td>
<td>Remove debris or blow out gas line.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scale forming in heat exchanger - clean heat exchanger and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>check pool pH and total alkalinity.</td>
</tr>
<tr>
<td>Heater going on and off continuously</td>
<td>Dirty filter......................................</td>
<td>Clean or replace filter.</td>
</tr>
<tr>
<td></td>
<td>Low water level in pool........................</td>
<td>Raise water level.</td>
</tr>
<tr>
<td></td>
<td>External bypass setting out of adjustment...</td>
<td>Adjust bypass.</td>
</tr>
<tr>
<td></td>
<td>*Pressure switch out of adjustment..........</td>
<td>Adjust pressure switch.</td>
</tr>
<tr>
<td>Liming or scale forming in exchanger</td>
<td>Pool water..</td>
<td>See Water Chemistry on page 2.</td>
</tr>
<tr>
<td></td>
<td>Bypassing too much water........................</td>
<td>Inspect bypass for movement, if no movement, replace.</td>
</tr>
<tr>
<td></td>
<td>U.G. not functioning................................</td>
<td>Replace if no movement when heated.</td>
</tr>
<tr>
<td>Sooting</td>
<td>High flow rates..................................</td>
<td>Reduce by adding manual bypass valve.</td>
</tr>
<tr>
<td></td>
<td>U.G. Inoperative................................</td>
<td>Adjust manual bypass valve until heater outlet water</td>
</tr>
<tr>
<td></td>
<td>*Air starvation...................................</td>
<td>temperature is between 105°F and 110°F.</td>
</tr>
<tr>
<td></td>
<td>*Improper venting................................</td>
<td>Refer to installation instructions.</td>
</tr>
<tr>
<td></td>
<td>*Insects or debris clogging burner intake ports.</td>
<td>Follow recommended installation instructions.</td>
</tr>
<tr>
<td>Pilot outage or "Weak Flame" signal</td>
<td>Low gas pressure..................................</td>
<td>Clean burners.</td>
</tr>
<tr>
<td></td>
<td>Restricted/dirty pilot..........................</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak pilot generator............................</td>
<td></td>
</tr>
<tr>
<td>Yellow lazy flame</td>
<td>Low gas pressure..................................</td>
<td>Adjust gas pressure.</td>
</tr>
<tr>
<td></td>
<td>*Insects or debris clogging burner intake ports.</td>
<td>Clean burners.</td>
</tr>
<tr>
<td>Outer jacket very hot (paint blistered)</td>
<td>*Broken refractory caused by shipping damage or improper combustion.</td>
<td>Replace refractory panels.</td>
</tr>
<tr>
<td></td>
<td>Excessive sooting of heat exchanger...........</td>
<td>Determine cause of sooting & correct.</td>
</tr>
<tr>
<td>Takes too long to heat pool or spa</td>
<td>Under-sized heater................................</td>
<td>Calculate heating capacity of heater:</td>
</tr>
<tr>
<td></td>
<td>Filter not running long enough................</td>
<td>Htr. output (BTUH) = Pool gallonage x 8.33.</td>
</tr>
<tr>
<td></td>
<td>Dirty filter.......................................</td>
<td>or refer to heater sizing chart.</td>
</tr>
<tr>
<td></td>
<td>Gas line or meter undersized...................</td>
<td>This does not take into account heat loss due to weather.</td>
</tr>
<tr>
<td>Leaking at well</td>
<td>Overacid..</td>
<td>Reset time clock.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean filter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to installation instructions.</td>
</tr>
<tr>
<td>Leaking at heat exchanger</td>
<td>Overacid..</td>
<td>Replace heat exchanger and maintain proper water chemistry.</td>
</tr>
<tr>
<td>Gasket brittle and leaking - (overheated)</td>
<td>Heater running after pump shuts off..........</td>
<td>See Pressure Switch Adjustment.</td>
</tr>
<tr>
<td></td>
<td>Refractory damage................................</td>
<td>Replace refractory.</td>
</tr>
<tr>
<td></td>
<td>Sooted heater.....................................</td>
<td>Determine cause of sooting and correct.</td>
</tr>
<tr>
<td>Combustion fan not running "Fan 5 min Delay" signal or "Fan Lockout" signal</td>
<td>Fan relay..</td>
<td>Replace fan relay.</td>
</tr>
<tr>
<td></td>
<td>Fan..</td>
<td>Loose connection or failed motor.</td>
</tr>
<tr>
<td></td>
<td>Burned motor</td>
<td>Incorrect wiring, replace blower.</td>
</tr>
<tr>
<td></td>
<td>Air pressure switch..............................</td>
<td>Replace air switch.</td>
</tr>
</tbody>
</table>

* Indicates symptom which usually occurs on initial start-up.
CAUTION: For qualified service personnel only.

1. Filter must be on with adequate water flow through heater.
2. Gas valve must be in "ON" position. Thermostat set higher than pool water temperature.
3. Jumpers are for temporary check only. If left in place, they could cause the heater to burn up.

Light pilot

If pilot burner remains lit
Jump across both "TH" wires on gas valves

If main burner fires, remove jumper
If main burner does not fire, remove jumper

Jump across pressure switch terminals

If main burner fires, remove jumper
If main burner does not fire, remove jumper

Clean filter
Jump across thermostat

Check for adequate water flow from filter
Replace pressure switch
Replace thermostat

If pilot burner goes out when main burner lights or when gas valve knob is released
Replace gas valve

If main burner fires, remove jumper
If main burner does not fire...

Jump across each high limit and remove jumper
Replace high limit that caused heater to fire

If pilot burner stays on
If burner does not remain lit, attach millivolt meter and read pilot output

If above 500mV, replace gas valve
If below 500mV, check gas supply, gas line size, gas pressure. Also check for insects or debris in pilot output

If output is still low, replace pilot generator

1. Raw Output (700mV± 100)
 Pilot generator disconnected from valve (knob must be held down to keep pilot on).
 White – Negative
 Red + Positive

2. Pilot Load (500mV± 100)
 Pilot generator connected to valve-Power applied to pilot solenoid.
 TP(Thermopile-Robertshaw)
 PP(Power Pile-Honeywell)
 TH TP – Common
 TH PP – Common

3. Main Valve Load (200mV± 100)
 Control/Limit circuit closed (All switches "ON")
 TP(Thermopile-Robertshaw)
 PP(Power Pile-Honeywell)
 TH TP – Common
 TH PP – Common
NOTE: Before troubleshooting, familiarize yourself with the start-up and check-out procedure.

Check line voltage power, low voltage transformer, limit controller, thermostat (controller) and wiring. Make sure that the line voltage is **NOT** 208 VAC.

Pull ignition lead and check spark at PC board.

- Spark Okay?
 - YES
 - NO Replace the PC board.

 • Check ignition cable, ground wiring, ceramic insulator and gap, and correct.
 • Check boot of the ignition cable for signs of melting or buckling. Take protective action to shield cable and boot from excessive temperatures.

 • Check that all manual gas valves are open, supply tubing and pressures are good, and pilot burner orifice is not blocked.
 • Check electrical connections between PC board and pilot operator on gas control.
 • Check for 24 VAC across PV-MV/PV terminals on PC board. If voltage is okay, replace gas control; if not, replace PC board.

 NOTE: If PC board goes into lockout, reset system. Lockout is used on L.P.G. models.

- NO Replace module.

 • Check for 24 VAC across MV-MV/PV terminals. If no voltage, replace module.
 • Check electrical connections between PC board and gas control. If okay, replace gas valve or gas control operator, i.e. pilot gas valve, flow switch etc.

 • Check for proper thermostat (controller) operation.
 • Remove MV lead at module; if valve closes, recheck temperature controller and wiring; if not, replace gas valve.

NOTE: IF PC board goes into lockout, reset system.

- Check continuity of ignition cable and ground wire.

 NOTE: If ground is poor or erratic, shutdowns may occur occasionally even though operation is normal at the time of checkout.

 • Check that pilot flame covers flame rod and is steady and blue.
 • If checks are okay, replace PC board.

NOTE: Some heaters may be equipped with an ignition module that shuts off pilot gas if pilot fails to light. To reset, interrupt power to heater.
CONTROL LOGIC - FLOW CHART

1. **Power On**
 - Is the water temperature displayed? **NO**
 - Push **MODE** switch to select "Pool" or "Spa"
 - Is the water temperature displayed? **YES**
 - Push **MODE** switch to select "Pool" or "Spa"
 - “Remote” and Water Temperature displayed (a remote control is controlling the heater)
 - Note: Disconnect the remote by turning the remote function off. See page 36 for instructions.
 - Is a fault code displayed and flashing? **NO**
 - Is a fault code displayed and flashing? **YES**
 - “Sensor Failure,” “Sensor Open” or “Sensor Short” - Temperature sensor out of range (replace sensor)
 - **Sensor Failure**
 - Inspect thermister, wires, and connector at Terminal P1
 - Check resistance value of the thermister. Reference to chart below.
 - If okay, replace Circuit Board.
 - **Sensor resistance at various temperatures**
 - Temp Degrees F | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 106
 - Resistance (k) | 261.1 | 199.0 | 153.1 | 118.8 | 93.0 | 73.3 | 58.3 | 51.0
 - **“Water Sw Open”**
 - Pressure switch. Verify water flow and pressure
 - **“Spark”**
 - Clean FILTER / STRAINER - backwash if necessary.
 - **“Hi Limit 1 Fault”**
 - High limit switch. Verify water flow. Inspect internal
 - **“Hi Limit 2 Fault”**
 - Thermostat (Unitherm Governor) and bypass valve.
 - **“Rollout Sw Open”**
 - Rollout Sensor - Check for blocked heat exchanger and soot.
 - **“Clock/Fireman Sw”**
 - Fireman or Remote switch connected to safety loop is in the OFF mode.
 - **“Vent/Field Sw #1”**
 - Vent switch open. Check connections to the board.
 - If extractor installed, troubleshoot extractor.
 - **“Ignition Lockout”**
 - Ignition lockout. Check power at pilot valve. Check spark (bad ignition circuit or hi-tension wire).
 - Verify clean pilot orifice and clearance from igniter to ground hood.
 - **“Ignition Failure”**
 - Ignition failure. Verify gas to the heater. Verify valve operation (gas present at tube fitting).
 - **Verify power at MV on P-4 Terminal on digital circuit board.**
 - **Verify power to valve MV voltage. (Replace valve.)**

2. **Water temperature and set temperature displayed?** **NO**
 - Water temperature and set temperature displayed? **YES**
 - **“Heating” will display briefly**
 - **“Spark”**
 - **Flame icon displayed and flashing?**
 - **OR**
 - Water temp displayed? (pilot lit and rectified)
 - **YES**
 - **“Heater Fired?”**
 - **NO**
 - **YES**
 - **END**
SECTION 6 - REPLACEMENT PARTS

NOTE: To supply you with the correct part, it is important that you supply the heater model number, serial number and type of gas when applicable.

Any part returned for replacement under standard company warranties must be properly tagged with a return parts tag, completely filled in with the heater serial number, model number, etc., and shipped to the Company freight prepaid.

If determined defective by the Company and within warranty, a like part or equal substitution will be returned, freight collect. Credit will not be issued.

MANUFACTURER:

2151 EASTMAN AVENUE
OXNARD, CA 93030
LO NOx HEATERS
POLYMER IN/OUT HEADER AND ACCESSORIES

HONEYWELL IID ATMOSPHERIC PILOT

HONEYWELL MILLIVOLT PILOT

IID LO NOx PILOT

FOR UNITS WITH ASME METAL HEADERS

50
<table>
<thead>
<tr>
<th>CALL OUT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>BURNER TRAY</td>
</tr>
<tr>
<td>1-B</td>
<td>Burner Tray w/ Burners (sea level)*</td>
</tr>
<tr>
<td>1-C</td>
<td>Burner Tray w/o Burners (sea level)*</td>
</tr>
<tr>
<td>2-B</td>
<td>Burner Tray w/ Gas Valve Nat Millivolt</td>
</tr>
<tr>
<td>2-C</td>
<td>Burner Tray w/ Gas Valve Pro Millivolt</td>
</tr>
<tr>
<td>2-D</td>
<td>Burner Tray w/ Gas Valve Nat IID</td>
</tr>
<tr>
<td>2-E</td>
<td>Burner Tray w/ Gas Valve Pro IID</td>
</tr>
<tr>
<td>2-F</td>
<td>Burner Spacer/Hold Down Kit</td>
</tr>
<tr>
<td>3-B</td>
<td>Burner 301210/13 301210/18 301210/22 301210/27</td>
</tr>
<tr>
<td>4-B</td>
<td>Burner Orifice Natural Gas</td>
</tr>
<tr>
<td>4-C</td>
<td>Burner Orifice 50*</td>
</tr>
<tr>
<td>4-D</td>
<td>Burner Orifice 51*</td>
</tr>
<tr>
<td>4-E</td>
<td>Burner Orifice 52*</td>
</tr>
<tr>
<td>4-F</td>
<td>Burner Orifice 53*</td>
</tr>
<tr>
<td>5-B</td>
<td>Burner Tray w/o Manifold w/o burners</td>
</tr>
<tr>
<td>C</td>
<td>CONTROLS</td>
</tr>
<tr>
<td>1-C</td>
<td>Thermostat Auto Reset 135 Deg Surface Mount</td>
</tr>
<tr>
<td>2-C</td>
<td>AGS 135° (Auto Gas Shut-Off) - Red Epoxy</td>
</tr>
<tr>
<td>3-C</td>
<td>High Limit 140° - Black Epoxy</td>
</tr>
<tr>
<td>4-C</td>
<td>P. C. Board/Control</td>
</tr>
<tr>
<td>5-C</td>
<td>Thermostat Control MV Units Mechanical</td>
</tr>
<tr>
<td>6-C</td>
<td>Temperature Sensor IID Units</td>
</tr>
<tr>
<td>D</td>
<td>GAS VALVE</td>
</tr>
<tr>
<td>1-D</td>
<td>Combination Valve - Nat. MV</td>
</tr>
<tr>
<td>2-D</td>
<td>Combination Valve - Pro. MV</td>
</tr>
<tr>
<td>3-D</td>
<td>Combination Valve - Nat. IID</td>
</tr>
<tr>
<td>4-D</td>
<td>Combustion Exhaust - Nat. IID</td>
</tr>
<tr>
<td>E</td>
<td>HEAT EXCHANGER - POLYMER</td>
</tr>
<tr>
<td>1-E</td>
<td>Heat Exchange Assy Cupro Nickel ***</td>
</tr>
<tr>
<td>2-E</td>
<td>Units manufactured prior to 7/2013</td>
</tr>
<tr>
<td>3-E</td>
<td>Units manufactured From 7/2013</td>
</tr>
<tr>
<td>4-E</td>
<td>Intake/Outlet Header Complete</td>
</tr>
<tr>
<td>5-E</td>
<td>Intake/Outlet Header (Includes 6-HP)</td>
</tr>
<tr>
<td>6-E</td>
<td>Return Header (Includes 6-HP)</td>
</tr>
<tr>
<td>7-E</td>
<td>Tube Bundle Copper ** & ***</td>
</tr>
<tr>
<td>8-E</td>
<td>Tube Bundle Cupro Nickel ** & ***</td>
</tr>
<tr>
<td>F</td>
<td>HP HEAT EXCHANGER - POLYMER</td>
</tr>
<tr>
<td>1-F</td>
<td>Baffle (Copper Heat Exchanger)</td>
</tr>
<tr>
<td>2-F</td>
<td>Baffle (Cupro Nickel Heat Exchanger)</td>
</tr>
<tr>
<td>3-F</td>
<td>Baffle Kit</td>
</tr>
<tr>
<td>4-F</td>
<td>Flange Nut Kit</td>
</tr>
<tr>
<td>5-F</td>
<td>O Ring Gasket (2)</td>
</tr>
<tr>
<td>6-F</td>
<td>Sensor Adapter Digital Electronic</td>
</tr>
<tr>
<td>7-F</td>
<td>Sensor Well Millivolt</td>
</tr>
<tr>
<td>8-F</td>
<td>Units manufactured prior to 6/2013</td>
</tr>
<tr>
<td>9-F</td>
<td>Units manufactured From 6/2013</td>
</tr>
<tr>
<td>10-F</td>
<td>Bypass Valve</td>
</tr>
<tr>
<td>11-F</td>
<td>Bypass Dam / Shaft</td>
</tr>
<tr>
<td>12-F</td>
<td>Bypass Spring (All Sizes Included)</td>
</tr>
<tr>
<td>13-F</td>
<td>Unitherm Governor</td>
</tr>
<tr>
<td>14-F</td>
<td>Unitherm Governor Plug</td>
</tr>
<tr>
<td>15-F</td>
<td>Drain Valve</td>
</tr>
<tr>
<td>16-F</td>
<td>Inlet/Outlet Header Dam</td>
</tr>
<tr>
<td>17-F</td>
<td>2" CPVC Connector & Nut (2)</td>
</tr>
<tr>
<td>18-F</td>
<td>O Ring (2)</td>
</tr>
</tbody>
</table>

*FOR INSTALLATION AT OVER 2,000 FEET ABOVE SEA LEVEL, DERATE 4% PER 1,000 FEET ABOVE SEA LEVEL. Refer to the heater’s rating plate.

WARNING: The Hydraulic conditions or water chemistry that caused the tube bundle to fail have very likely also damaged the bypass valve and Unitherm Governor. We recommend you replace the Unitherm Governor and inspect the bypass assembly. Failure to do so could cause premature failure of this replacement part.

***WARNING:** Copper and Cupro Nickel heat exchangers and tube bundles are not interchangeable. Units with suffix "C" must use copper replacement parts and units with suffix "X" must use cupro nickel replacement parts.
ATMOSPHERIC HEATERS

<table>
<thead>
<tr>
<th>CALL OUT</th>
<th>DESCRIPTION</th>
<th>206A</th>
<th>266A</th>
<th>336A</th>
<th>406A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-HM</td>
<td>Heat Exchange Assy.Copper ASME CI</td>
<td>010051F</td>
<td>006727F</td>
<td>010063F</td>
<td>010054F</td>
</tr>
<tr>
<td>2-HM</td>
<td>Heat Exchange Assy Cupro Nickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>15-HM</td>
<td>Inlet & Outlet Header ASME CI Complete</td>
<td>006730F</td>
<td>006730F</td>
<td>006730F</td>
<td>006730F</td>
</tr>
<tr>
<td>16-HM</td>
<td>Flange Gasket 1 1/2" Connections</td>
<td>012319F</td>
<td>012319F</td>
<td>012319F</td>
<td>012319F</td>
</tr>
<tr>
<td>3-HM</td>
<td>Flange Gasket 2" Connections</td>
<td>006730F</td>
<td>006730F</td>
<td>006730F</td>
<td>006730F</td>
</tr>
<tr>
<td>4-HM</td>
<td>Heat Exchange Assy.Copper ASME CI</td>
<td>010051F</td>
<td>006727F</td>
<td>010063F</td>
<td>010054F</td>
</tr>
<tr>
<td>5-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>6-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>7-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>8-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>9-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>10-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>11-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>12-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>13-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>14-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>15-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>16-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>17-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>18-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>19-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
<tr>
<td>20-HM</td>
<td>Heat Exchange Assy.Cupronickel ASME CI</td>
<td>010360F</td>
<td>010361F</td>
<td>010362F</td>
<td>010363F</td>
</tr>
</tbody>
</table>

WARNING: The hydraulic conditions or water chemistry that caused the tube bundle to fail have very likely also damaged the bypass valve and Unitherm Governor. We recommend you replace the Unitherm Governor and inspect the bypass assembly. Failure to do so could cause premature failure of this replacement part.
<table>
<thead>
<tr>
<th>CALL OUT</th>
<th>DESCRIPTION</th>
<th>206A</th>
<th>266A</th>
<th>336A</th>
<th>406A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-S</td>
<td>Jacket Top (Louvered)</td>
<td>010047F</td>
<td>010048F</td>
<td>010049F</td>
<td>010050F</td>
</tr>
<tr>
<td>2-S</td>
<td>Flue Collector (Units with Polymer Header)</td>
<td>010071F</td>
<td>010072F</td>
<td>010073F</td>
<td>010074F</td>
</tr>
<tr>
<td></td>
<td>Flue Collector (Units with Metal Header)</td>
<td>010075F</td>
<td>010076F</td>
<td>010077F</td>
<td>010078F</td>
</tr>
</tbody>
</table>
| 3-S | Door Assy R Raypak
| | Green | 010378F | 010379F | 010380F | 010381F |
| | Cool Dark & Warm Dark Gray | 013859F | 013860F | 013861F | 013862F |
| | Rheem
| | Green | 010382F | 010383F | 010384F | 010385F |
| | Cool Dark & Warm Dark Gray | 013863F | 013864F | 013865F | 013866F |
| | Ruud
| | Green | 010382F | 010383F | 010384F | 010385F |
| | Cool Dark & Warm Dark Gray | 013859F | 013860F | 013861F | 013862F |
| | Warm Dark Gray (Units manufactured prior to 9/2012) | 013867F | 013868F | 013869F | 013870F |
| | Cool Dark & Warm Dark Gray (Units mfd after to 9/2012) | 013859F | 013860F | 013861F | 013862F |
| 4-S | Access Panel Set (3 Pcs Units with Polymer Header) | 010311F | 010311F | 010311F | 010311F |
| | Access Panel Set (3 Pcs. Units with Metal Header) | 010312F | 010312F | 010312F | 010312F |
| 5-S | Jacket Side Panel Right | 010376F | 010376F | 010376F | 010376F |
| 6-S | Jacket Side Panel Left | 010377F | 010377F | 010377F | 010377F |
| 7-S | Jacket Rear Panel (2 Pcs.) | 010372F | 010373F | 010374F | 010375F |
| 8-S | Podstat Cover/Lock | 009505 | 009505 | 009505 | 009505 |
| 9-S | High Limit Cover | 010319F | 010319F | 010319F | 010319F |
| 10-S | Base Heat Shield | 010320F | 010320F | 010320F | 010320F |
| 11-S | Up Front Control Panel
| | Green | 010321F | 010322F | 010323F | 010324F |
| | Cool Dark Gray | 013877F | 013878F | 013879F | 013890F |
| | Warm Dark Gray | 013891F | 013892F | 013893F | 013894F |
| 12-S | High Limit Shield | 010342F | 010342F | 010342F | 010342F |
| 13-S | Weather Shield | 010325F | 010326F | 010327F | 010328F |
| V | Indoor Stack Kit (Includes inner adapter panel) | 009838 | 009839 | 009840 | 009841 |
| | Outdoor Stack Kit (Includes inner adapter panel) | 009834 | 009835 | 009836 | 009837 |
| 2-V | Stack Adapter | 010330F | 010331F | 010332F | 010333F |
| 4-V | Outer Stack Adapter | 011461F | 011462F | 011463F | 011464F |
| 3-V | "Pagoda" Top
| | Green | 010334 | 010335 | 010336 | 010337 |
| | Cool Dark Gray | 013883F | 013884F | 013885F | 013886F |

** Atmospheric CONVERSION KITS**

<table>
<thead>
<tr>
<th>Gas Conversions</th>
<th>206A</th>
<th>266A</th>
<th>336A</th>
<th>406A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nat. to Pro. MV Pilot</td>
<td>004690B</td>
<td>004690B</td>
<td>004692B</td>
<td>004692B</td>
</tr>
<tr>
<td>Pro. to Nat. MV Pilot</td>
<td>010419F</td>
<td>010419F</td>
<td>010420F</td>
<td>010420F</td>
</tr>
<tr>
<td>Nat. to Pro. IID Pilot</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Pro. to Nat. IID Pilot</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

* Gas conversions are to be done only by a qualified agency.
** Conversion must be made with complete burner tray and gas valve (see item 1-B).
CALL OUT DESCRIPTION

BB BURNER TRAY***

<table>
<thead>
<tr>
<th>CALL OUT</th>
<th>DESCRIPTION</th>
<th>207A</th>
<th>267A</th>
<th>337A</th>
<th>407A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-B</td>
<td>Burner Tray w/Burners (0-5000)</td>
<td>010343F</td>
<td>010344F</td>
<td>010345F</td>
<td>010346F</td>
</tr>
<tr>
<td>2-B</td>
<td>Burner Tray w/o Burner (0-5000)</td>
<td>010084F</td>
<td>010085F</td>
<td>010086F</td>
<td>010087F</td>
</tr>
<tr>
<td>3-B</td>
<td>Burner Orifice Nat. #26 (0-5000)*</td>
<td>351632/3</td>
<td>351632/4</td>
<td>351632/5</td>
<td>351632/6</td>
</tr>
<tr>
<td>4-B</td>
<td>Burner Orifice Nat. #31 (above 5000 ft.)*</td>
<td>351523/3</td>
<td>351523/4</td>
<td>351523/5</td>
<td>351523/6</td>
</tr>
<tr>
<td>5-B</td>
<td>Blower</td>
<td>0100107F</td>
<td>0100108F</td>
<td>0100109F</td>
<td>0100110F</td>
</tr>
<tr>
<td>6-B</td>
<td>Combustion Air Orifice Plate</td>
<td>0103038F</td>
<td>0103039F</td>
<td>0103040F</td>
<td>0103041F</td>
</tr>
</tbody>
</table>

C CONTROLS

<table>
<thead>
<tr>
<th>CALL OUT</th>
<th>DESCRIPTION</th>
<th>207A</th>
<th>267A</th>
<th>337A</th>
<th>407A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-C</td>
<td>Thermostat Auto Reset 135 Deg Surface Mount</td>
<td>006725F</td>
<td>006725F</td>
<td>006725F</td>
<td>006725F</td>
</tr>
<tr>
<td>2-C</td>
<td>AGS 135° (Auto Gas Shut-Off) - Red Epoxy</td>
<td>600892B</td>
<td>600892B</td>
<td>600892B</td>
<td>600892B</td>
</tr>
<tr>
<td>3-C</td>
<td>High Limit 140° - Black Epoxy</td>
<td>600893B</td>
<td>600893B</td>
<td>600893B</td>
<td>600893B</td>
</tr>
<tr>
<td>4-C</td>
<td>P. C. Board/Control</td>
<td>013464F</td>
<td>013464F</td>
<td>013464F</td>
<td>013464F</td>
</tr>
<tr>
<td>5-C</td>
<td>LCD Display</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

G GAS VALVE

<table>
<thead>
<tr>
<th>CALL OUT</th>
<th>DESCRIPTION</th>
<th>207A</th>
<th>267A</th>
<th>337A</th>
<th>407A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-G</td>
<td>Combination Valve - Gas On/Off - Nat</td>
<td>010329F</td>
<td>010329F</td>
<td>010329F</td>
<td>010329F</td>
</tr>
</tbody>
</table>

HP HEAT EXCHANGER - POLYMER

<table>
<thead>
<tr>
<th>CALL OUT</th>
<th>DESCRIPTION</th>
<th>207A</th>
<th>267A</th>
<th>337A</th>
<th>407A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-HP</td>
<td>Heat Exchange Assy Cupro Nickel</td>
<td>010356F</td>
<td>010357F</td>
<td>010358F</td>
<td>010359F</td>
</tr>
<tr>
<td>2-HP</td>
<td>Inlet/Outlet Header Complete</td>
<td>006827F</td>
<td>006827F</td>
<td>006827F</td>
<td>006827F</td>
</tr>
<tr>
<td>3-HP</td>
<td>Return Header (Includes 6-HP)</td>
<td>006707F</td>
<td>006707F</td>
<td>006707F</td>
<td>006707F</td>
</tr>
<tr>
<td>4-HP</td>
<td>Tube Bundle Copper **</td>
<td>010099F</td>
<td>010099F</td>
<td>010099F</td>
<td>010099F</td>
</tr>
<tr>
<td>5-HP</td>
<td>Baffle</td>
<td>010038F</td>
<td>005261F</td>
<td>010040F</td>
<td>010041F</td>
</tr>
<tr>
<td>6-HP</td>
<td>Flange Nut Kit</td>
<td>008299F</td>
<td>008299F</td>
<td>008299F</td>
<td>008299F</td>
</tr>
<tr>
<td>7-HP</td>
<td>O Ring Gasket (2)</td>
<td>006713F</td>
<td>006713F</td>
<td>006713F</td>
<td>006713F</td>
</tr>
<tr>
<td>8-HP</td>
<td>Sensor Adapter Digital Electronic</td>
<td>006714F</td>
<td>006714F</td>
<td>006714F</td>
<td>006714F</td>
</tr>
</tbody>
</table>

HM HEAT EXCHANGER - METAL

<table>
<thead>
<tr>
<th>CALL OUT</th>
<th>DESCRIPTION</th>
<th>207A</th>
<th>267A</th>
<th>337A</th>
<th>407A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-HM</td>
<td>Heat Exchange Assy Copper ASME CI</td>
<td>010051F</td>
<td>006727F</td>
<td>010053F</td>
<td>010054F</td>
</tr>
<tr>
<td>2-HM</td>
<td>Inlet/Outlet Header ASME CI (Complete)</td>
<td>006730F</td>
<td>006730F</td>
<td>006730F</td>
<td>006730F</td>
</tr>
<tr>
<td>3-HM</td>
<td>Inlet & Outlet Flange</td>
<td>003786F</td>
<td>003786F</td>
<td>003786F</td>
<td>003786F</td>
</tr>
<tr>
<td>4-HM</td>
<td>Flange Gasket 1 1/2" Connections</td>
<td>002336B</td>
<td>002336B</td>
<td>002336B</td>
<td>002336B</td>
</tr>
<tr>
<td>5-HM</td>
<td>Return Header ASME CI</td>
<td>006713F</td>
<td>006713F</td>
<td>006713F</td>
<td>006713F</td>
</tr>
<tr>
<td>6-HM</td>
<td>Tube Bundle Copper ASME **</td>
<td>010038F</td>
<td>010038F</td>
<td>010038F</td>
<td>010038F</td>
</tr>
</tbody>
</table>

*For installations at over 5,000 feet above sea level, consult the factory.

Warning: The hydraulic conditions or water chemistry that caused the tube bundle to fail have very likely also damaged the bypass valve and Unitherm Governor. We recommend you replace the Unitherm Governor and inspect the bypass assembly. Failure to do so could cause premature failure of this replacement part.

***Replacement burner trays are built for sea level, natural gas applications unless otherwise specified at the time the order is placed.
<table>
<thead>
<tr>
<th>CALL OUT</th>
<th>DESCRIPTION</th>
<th>207A</th>
<th>267A</th>
<th>337A</th>
<th>407A</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>CONTROL BOX</td>
<td>006736F</td>
<td>006736F</td>
<td>006736F</td>
<td>006736F</td>
</tr>
<tr>
<td>1-J</td>
<td>Transformer 120/240/24V</td>
<td>009493F</td>
<td>009493F</td>
<td>009493F</td>
<td>009493F</td>
</tr>
<tr>
<td>2-J</td>
<td>Rocker Switch</td>
<td>008784F</td>
<td>008784F</td>
<td>008784F</td>
<td>008784F</td>
</tr>
<tr>
<td>3-J</td>
<td>Relay Low Nox</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>MISCELLANEOUS COMPONENTS</td>
<td>006737F</td>
<td>006737F</td>
<td>006737F</td>
<td>006737F</td>
</tr>
<tr>
<td>1-M</td>
<td>Pressure Switch 1.75 PSI</td>
<td>006035F</td>
<td>006035F</td>
<td>006035F</td>
<td>006035F</td>
</tr>
<tr>
<td>2-M</td>
<td>Roll-Out Switch</td>
<td>008784F</td>
<td>008784F</td>
<td>008784F</td>
<td>008784F</td>
</tr>
<tr>
<td>3-M</td>
<td>PRV 125 PSI (Optional)</td>
<td>009493F</td>
<td>009493F</td>
<td>009493F</td>
<td>009493F</td>
</tr>
<tr>
<td>4-M</td>
<td>Deliming Kit</td>
<td>009492F</td>
<td>009492F</td>
<td>009492F</td>
<td>009492F</td>
</tr>
<tr>
<td>5-M</td>
<td>Wire/Harness</td>
<td>010347F</td>
<td>010347F</td>
<td>010347F</td>
<td>010347F</td>
</tr>
<tr>
<td>6-M</td>
<td>Control Bezel (Includes Switch Decal)</td>
<td>009491F</td>
<td>009491F</td>
<td>009491F</td>
<td>009491F</td>
</tr>
<tr>
<td>7-M</td>
<td>Switch/Decal-Membrane</td>
<td>009492F</td>
<td>009492F</td>
<td>009492F</td>
<td>009492F</td>
</tr>
<tr>
<td>8-M</td>
<td>Control Bezel Cover</td>
<td>010348F</td>
<td>010348F</td>
<td>010348F</td>
<td>010348F</td>
</tr>
<tr>
<td>9-M</td>
<td>Gasket Insulation</td>
<td>011636</td>
<td>011636</td>
<td>011636</td>
<td>011636</td>
</tr>
<tr>
<td>10-M</td>
<td>Blower / Air Pressure Switch Sample Tube</td>
<td>011745F</td>
<td>011745F</td>
<td>011745F</td>
<td>011745F</td>
</tr>
<tr>
<td>11-M</td>
<td>Touch-up Paint</td>
<td>011733F</td>
<td>011733F</td>
<td>011733F</td>
<td>011733F</td>
</tr>
<tr>
<td>12-M</td>
<td>Tie Down Bracket (Optional)</td>
<td>013491F</td>
<td>013491F</td>
<td>013491F</td>
<td>013491F</td>
</tr>
<tr>
<td>13-M</td>
<td>Texas Code Add/On (ASME Only)</td>
<td>013491F</td>
<td>013491F</td>
<td>013491F</td>
<td>013491F</td>
</tr>
<tr>
<td>P</td>
<td>PILOT</td>
<td>010232F</td>
<td>010232F</td>
<td>010232F</td>
<td>010232F</td>
</tr>
<tr>
<td>1-P</td>
<td>Pilot Nat. IID Low Nox</td>
<td>010233F</td>
<td>010233F</td>
<td>010233F</td>
<td>010233F</td>
</tr>
<tr>
<td>2-P</td>
<td>Pilot Electrode</td>
<td>011735F</td>
<td>011735F</td>
<td>011735F</td>
<td>011735F</td>
</tr>
<tr>
<td>3-P</td>
<td>Pilot Mounting Bracket</td>
<td>011926F</td>
<td>011926F</td>
<td>011926F</td>
<td>011926F</td>
</tr>
<tr>
<td>4-P</td>
<td>Pilot Tube</td>
<td>010349F</td>
<td>010349F</td>
<td>010349F</td>
<td>010349F</td>
</tr>
<tr>
<td>5-P</td>
<td>Hi Tension Wire IID</td>
<td>011927F</td>
<td>011927F</td>
<td>011927F</td>
<td>011927F</td>
</tr>
<tr>
<td>R</td>
<td>REFRACTORY</td>
<td>010079F</td>
<td>010079F</td>
<td>010079F</td>
<td>010079F</td>
</tr>
<tr>
<td>1-R</td>
<td>Refractory Common (Left & Right)</td>
<td>010080F</td>
<td>010080F</td>
<td>010080F</td>
<td>010080F</td>
</tr>
<tr>
<td>2-R</td>
<td>Refractory Uncommon (Front and Rear)</td>
<td>010081F</td>
<td>010081F</td>
<td>010081F</td>
<td>010081F</td>
</tr>
<tr>
<td>3-R</td>
<td>Refractory Retainer Kit</td>
<td>010082F</td>
<td>010082F</td>
<td>010082F</td>
<td>010082F</td>
</tr>
<tr>
<td>S</td>
<td>SHEETMETAL</td>
<td>010047F</td>
<td>010047F</td>
<td>010047F</td>
<td>010047F</td>
</tr>
<tr>
<td>1-S</td>
<td>Jacket Top (Louvered)</td>
<td>010063F</td>
<td>010063F</td>
<td>010063F</td>
<td>010063F</td>
</tr>
<tr>
<td>2-S</td>
<td>Flue Collector (Units with Metal Header)</td>
<td>010067F</td>
<td>010067F</td>
<td>010067F</td>
<td>010067F</td>
</tr>
<tr>
<td>3-S</td>
<td>Door Assy.</td>
<td>010079F</td>
<td>010079F</td>
<td>010079F</td>
<td>010079F</td>
</tr>
<tr>
<td>V</td>
<td>VENTING</td>
<td>009838</td>
<td>009838</td>
<td>009838</td>
<td>009838</td>
</tr>
<tr>
<td>1-V</td>
<td>Stack Adapter</td>
<td>009834</td>
<td>009834</td>
<td>009834</td>
<td>009834</td>
</tr>
<tr>
<td>2-V</td>
<td>Outer Stack Adapter</td>
<td>011461F</td>
<td>011461F</td>
<td>011461F</td>
<td>011461F</td>
</tr>
<tr>
<td>3-V</td>
<td>"Pagoda" Top</td>
<td>010342F</td>
<td>010342F</td>
<td>010342F</td>
<td>010342F</td>
</tr>
</tbody>
</table>